Chemistry 163B Absolute Entropies
 and
 Entropy of Mixing

APPENDIX A: $\quad \Delta H_{t}, \Delta G_{f}, B U T S$ (no Δ, no "sub f")

Substance	$\begin{gathered} \Delta H \underline{\mathrm{o}}_{\mathrm{f}} \\ \Delta H_{f}\left(\mathbf{k J} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta G \underline{\mathrm{o}}_{f} \\ \Delta G_{f}^{\circ}\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{S}^{\underline{o}} \\ S^{\circ}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{gathered}$	$C_{P, m}\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$	Atomic or Molecular Weight (amu)
Carbon					
Graphite(s)	0	0	5.74	8.52	12.011
Diamond(s)	1.89	2.90	2.38	6.12	12.011
$\mathrm{C}(\mathrm{g})$	716.7	671.2	158.1	20.8	12.011
$\mathrm{CO}(\mathrm{g})$	-110.5	-137.2	197.7	29.1	28.011
Hydrogen					
$\mathrm{H}_{2}(\mathrm{~g})$	0	0	130.7	28.8	2.016
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	-228.6	188.8	33.6	18.015
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	-237.1	70.0	75.3	18.015
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$			48.0	36.2 (273 K)	18.015
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$	-136.3	-105.6	232.7	43.1	34.015
$\mathrm{H}^{+}(a q)$	0	0	0		1.008
$\mathrm{OH}^{-}(a q)$	-230.0	-157.24	-10.9		17.01
Oxygen					
$\mathrm{O}_{2}(\mathrm{~g})$	0	0	205.2	29.4	31.999
$\mathrm{O}(\mathrm{g})$	$2 \overline{49.2}$	231.7	161.1	21.9	15.999
$\mathrm{O}_{3}(\mathrm{~g})$	142.7	163.2	238.9	39.2	47.998
$\mathrm{OH}(\mathrm{g})$	39.0	34.22	183.7	29.9	17.01
$\mathrm{OH}^{-}(\mathrm{aq})$	-230.0	-157.2	-10.9		17.01

Third Law of Thermodynamics

The entropy of any perfect crystalline substance

approaches $\mathbf{0}$ as $\mathrm{T} \longrightarrow \mathbf{0 K}$

$S=k \ln W$

for perfectly ordered crystalline substance

$$
\mathrm{W} \rightarrow 1 \text { as } \mathrm{T} \longrightarrow \mathrm{OK} \Rightarrow \mathrm{~S} \rightarrow 0
$$

to calculate absolute entropy from measurements (E\&R pp. 101-103, Figs 5.8-5.10)

full calculation of $\mathrm{So}_{298}^{\circ}$ for $\mathrm{O}_{2}(\mathrm{~g})$ (Example Problem 5.9, E\&R pp103-104)

	$\Delta \bar{S} \boldsymbol{J K K}^{-1} \mathrm{~mol}^{-1}$
$\bar{S}(0 \mathrm{~K})$	0
$\Delta \bar{S}_{A}(0 \rightarrow 23.66)$	8.182
$\Delta \bar{S}_{\phi}($ III \rightarrow II at 23.66 K$)$	3.964
$\Delta \bar{S}_{B}(23.66 \rightarrow 43.76)$	19.61
$\Delta \bar{S}_{\phi}($ II \rightarrow I at 43.76K)	16.98
$\Delta \bar{S}_{C}(43.76 \rightarrow 54.39)$	10.13
$\Delta \bar{S}_{\phi}(I \rightarrow \ell$ at 54.39 K$)$	8.181
$\Delta \bar{S}_{D}(54.39 \rightarrow 90.20)$	27.06
$\Delta \bar{S}_{\phi}(\ell \rightarrow$ at 90.20 K$)$	75.59
$\Delta \bar{S}_{E}(90.20 \rightarrow 298.15)$	35.27
total	$204.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$\Delta S_{\text {reaction }}$ from absolute entropies

$n_{A} A+n_{B} B \rightarrow n_{C} C+n_{D} D$ at 298K

$$
\Delta \boldsymbol{S}_{\text {reaction }}=\boldsymbol{n}_{\boldsymbol{C}}\left(\overline{\boldsymbol{S}}_{298}^{0}\right)_{\boldsymbol{C}}+\boldsymbol{n}_{\boldsymbol{D}}\left(\overline{\boldsymbol{S}}_{298}^{0}\right)_{\boldsymbol{D}}-\boldsymbol{n}_{\boldsymbol{A}}\left(\overline{\boldsymbol{S}}_{298}^{0}\right)_{\boldsymbol{A}}-\boldsymbol{n}_{\boldsymbol{B}}\left(\overline{\boldsymbol{S}}_{298}^{0}\right)_{\boldsymbol{B}}
$$

$\Delta \boldsymbol{S}_{\text {reaction }}^{0}(298 \boldsymbol{K})=\sum_{i} v_{i}\left(\overline{\boldsymbol{S}}_{298}^{0}\right)_{i}$
$\left(\overline{\boldsymbol{S}}_{298}^{0}\right)_{i}$ are $3^{\text {rd }}$ Law entropies (e.g. Appendix A)

qualitative factors affecting molecular entropy

- Higher T \Rightarrow

$$
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{P}=\frac{\boldsymbol{C}_{\boldsymbol{P}}}{\boldsymbol{T}}>0
$$

- Higher P \Rightarrow

$$
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{T}=-\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}<0
$$

- Phase $\quad \mathbf{S}(\mathbf{g})$ vs $\mathbf{S}(\ell)$ vs $\mathbf{S}(\mathbf{s})$
(in a reaction the side (reactants vs products) with the greater number of moles of gas generally has hiaher S

$$
\Delta n_{\text {gas }}>0 \rightarrow \Delta S_{\text {reaction }} \quad \Delta n_{\text {gas }}<0 \rightarrow \Delta S_{\text {reaction }} \quad \text {) }
$$

- Mixing or dissolving of components $(\ell+\ell),(s+s),(\ell+s),(g+g)$ solutions \Rightarrow
$\cdot(\mathbf{g}+\ell)$ or $(\mathbf{g}+\mathbf{s})$ solution \Rightarrow

more qualitative factors affecting molecular entropy

- substances with higher mass have

$$
\begin{aligned}
& F_{2}(g)<\mathrm{Cl}_{2}(g)<\mathrm{Br}_{2}(g)<I_{2}(g) \\
& \begin{array}{lllll}
S^{o}{ }_{298} & 202.78 & 223.07 & 245.46 & 260.69 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{array} \\
& \text { (more closely spaced rotational and vibrational levels) }
\end{aligned}
$$

- more rigid substances have

	$\mathrm{C}(\mathrm{gr})$	$\mathrm{C}(\mathrm{dia})$	
$S^{\circ}{ }_{298}$	5.74	$2.377 \quad \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	

- more complex substances have

	$\mathrm{HF}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{D}_{2} \mathrm{O}(\mathrm{g})$	
$M W$	20	18	20	amu
So_{298}	173.78	188.83	198.34	$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Thermal properties of entropy and entropy calculations
- $d S=\frac{\vec{d} q_{r e v}}{T} ; \quad \Delta S=\int \frac{\vec{d} q_{r v}}{T} ; \quad \oint \frac{\vec{d} q_{r v v}}{T}=0$
- $\Delta S \geq \int \frac{\vec{d} q}{T} ; \quad 0 \geq \oint \frac{\vec{d} q}{T} ; \quad$ (= for reversible process; $>$ for spontaneous ['real'] process)
- $\Delta S_{\text {totalal Enviverse }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \geq 0$
- S is a state function; $d S$ is an exact differential
- Dependence of S on
- $\mathrm{T}:\left(\frac{\partial \bar{S}}{\partial T}\right)_{V}=\frac{\bar{C}_{V}}{T} ;\left(\frac{\partial \bar{S}}{\partial T}\right)_{P}=\frac{\bar{C}_{P}}{T}$
- $\mathrm{P}:\left(\frac{\partial \bar{S}}{\partial P}\right)_{T}=-\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}$
- $\mathrm{V}:\left(\frac{\partial \bar{S}}{\partial \bar{V}}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}$
- Phase: $\Delta S=\frac{\Delta H_{\text {equilibrium phase change }}}{T_{\text {equilibrium phase change }}}$
from lecture on $2^{\text {nd }}$ Law and probability (disorder)

	- Disorder, w, did not change during an adiabatic reversible expansion ($\mathrm{q}_{\mathrm{rev}}=0$)
(something special	- Disorder, \mathbf{W}, increased in isothermal reversible expansion $\left(q_{\text {rev }}>0\right)$
	- Disorder, \mathbf{W}, increased with T increase ($q>0$)
	- Disorder, W, decreased with T decrease ($q<0$)

- As $\mathrm{T} \rightarrow 0, \quad \mathbf{W} \rightarrow 1$
- Calculation of entropy changes for changes in P, V, T, phase
- Third Law and calculations using Third Law Entropies: $\bar{S}^{\circ}(T)$
- $\Delta S_{\text {mexime }}^{0}(T)=\sum_{i} v_{i} \bar{S}_{i}^{0}(T)$
- Entropy of mixing: $\Delta S=-n_{\text {total }} R \sum_{i} X_{i} \ln X_{i} \quad$ where $X_{i}=\frac{n_{i}}{n_{\text {total }}}$

31.

a. Prove, in general (but $d w_{\text {other }}=0 ; d n=0$), the relationship in equation $3.19 \mathrm{E} \& R$)

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

b. Evaluate $\left(\frac{\partial U}{\partial V}\right)_{T}$ for an ideal gas.
c. Evaluate $\left(\frac{\partial \bar{U}}{\partial \bar{V}}\right)_{T}$ for a Van der Waals gas $\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T$

Lecture 5 slide 17 "derive łater" now
e. Prove, in general (but $d w_{\text {other }}=0 ; \quad d n=0$), the relationship in equation 3.44 E\&R:

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{P} \quad \text { analogous to 31a }
$$

the relationships

definitions:
U \equiv internal energy
$H \equiv U+P V$
$\mathrm{A} \equiv \mathrm{U}-\mathrm{TS}$
$\mathrm{G} \equiv \mathrm{H}-\mathrm{TS}$
differentials of state functions:

$$
\begin{aligned}
& d U=T d S-P d V \\
& d H=T d S+V d P \\
& d A=-S d T-P d V \\
& d G=-S d T+V d P
\end{aligned}
$$

heat and temperature:

$$
\begin{aligned}
& \vec{d} q_{V}=n \bar{C}_{V} d \boldsymbol{T} \quad \bar{d} q_{P}=n \bar{C}_{P} d T \\
& d U=\boldsymbol{d} q+\boldsymbol{d} w=\boldsymbol{d} q-P d V \\
& d S=\frac{\Delta q_{r e v}}{T} \quad d q=T d s \\
& \left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{V}=\frac{\boldsymbol{n} \overline{\boldsymbol{C}}_{V}}{\boldsymbol{T}} \quad\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{P}=\frac{\boldsymbol{n} \overline{\boldsymbol{C}}_{P}}{\boldsymbol{T}}
\end{aligned}
$$

HW\#6 Prob 31a: derive E\&R equation 3.19 'LATER is NOW'

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=\mathbf{? ? ?}
$$

in terms of $\mathrm{P}, \mathrm{V}, \mathrm{T}$ and their derivatives
technique applies to HW\#6 Prob: 31e

One mole of $\mathrm{CO}_{2}(\mathrm{~g})$ is expanded isothermally and reversibly from V_{1} to V_{2}.Using the van der Waals equation of state

$$
\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T
$$

to describe $\mathrm{CO}_{2}(\mathrm{~g})$ calculate $\mathrm{w}, \Delta \mathrm{U}, \mathrm{q}$, and $\Delta \mathrm{S}$ in terms of V_{1} and V_{2} and the van der Waals constants a and b.

Entropy of Mixing of Ideal Gasses

(EXTRA but not OPTIONAL)

$E \& R \approx \operatorname{Sec} 6.6$

Entropy of mixing for ideal gas (distinguishable particles)

- isolated from surroundings
$q_{\text {sys }}=q_{\text {surr }}=0$
$\mathrm{w}=\mathbf{0}$

- $\Delta \mathrm{S}_{\text {surr }}=0$
- $\Delta S_{\text {universe }}>0$
- $\Delta S_{s y s}>0=? ? ?$
reversible isothermal expansion to total volume $\Delta S=n R \ln \frac{V_{\text {final }}}{V_{\text {inital }}}$

reversible recombining of volumes

- Thermal properties of entropy and entropy calculations
$\checkmark \quad \circ \quad d S=\frac{\vec{d} q_{r o v}}{T} ; \Delta S=\int \frac{\vec{d} q_{r v v}}{T} ; \quad \oint \frac{\vec{d} q_{r v v}}{T}=0$
$\checkmark \quad \Delta S \geq \int \frac{d q}{T} ; \quad 0 \geq \oint \frac{d q}{T} ; \quad$ (= for reversible process; $>$ for spontaneous ['real'] process)

- S is a state function; $d S$ is an exact differential
- Dependence of S on
- $\mathrm{T}:\left(\frac{\partial \bar{S}}{\partial T}\right)_{V}=\frac{\bar{C}_{V}}{T} ;\left(\frac{\partial \bar{S}}{\partial T}\right)_{P}=\frac{\bar{C}_{P}}{T}$
- $\mathrm{P}:\left(\frac{\partial \bar{S}}{\partial P}\right)_{T}=-\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}$
- $\mathrm{V}:\left(\frac{\partial \bar{S}}{\partial \bar{V}}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}$
- Phase: $\Delta S=\frac{\Delta H_{\text {eequilbrium }} \text { phase change }}{T_{\text {equilibrium phasechange }}}$
- Calculation of entropy changes for changes in $\mathrm{P}, \mathrm{V}, \mathrm{T}$, phase
- Third Law and calculations using Third Law Entropies: $\bar{S}^{\circ}(T)$
- $\Delta S_{\text {maxime }}^{0}(T)=\sum_{i} v_{i} \bar{S}_{i}^{0}(T)$
- Entropy of mixing: $\Delta S=-n_{\text {total }} R \sum_{i} X_{i} \ln X_{i} \quad$ where $X_{i}=\frac{n_{i}}{n_{\text {total }}}$

Relationships FOR MIDTERM \#2 CHEMISTRY 163B

definitions for $\mathrm{U}, \mathrm{H}, \mathrm{A}$, and G (student fills in at exam time):
total differentials for: $\mathrm{dU}, \mathrm{dH}, \mathrm{dA}$, and dG (student fills in at exam time):

For reversible adiabatic path, ideal gas:

- $T_{1}^{\frac{L}{\alpha}} V_{1}-T_{2}^{\frac{L}{\lambda}} V_{2}$ (adiabatic reversible path)
- $\mathrm{P}_{1} \mathrm{~V}_{1}^{\frac{\zeta}{4}}-\mathrm{P}_{2} \mathrm{~V}_{2}^{\frac{\zeta}{4}} \quad$ (adiabatic reversible path, $\mathrm{PV}^{\gamma}=$ constant)

Energy and enthalpy:
- $\left(\Delta H_{r-n}\right)_{T}-\Delta U_{T, n}+\Delta n_{\infty} R T$
- $\left(\frac{\partial H}{\partial T}\right)_{p}-C_{p}-n \bar{C}_{p}: \quad \Delta H\left(T_{2}\right)-\Delta H\left(T_{1}\right)+\int_{T_{1}}^{T_{p}} \Delta C_{p} a T$

For ideal gas:

- $\Delta U=C_{r} \Delta T=n \bar{C} \Delta T$
- $\Delta H=C_{r} \Delta T=n \bar{C}_{r} \Delta T$
- $\left(\boldsymbol{C}_{r}-\bar{C}_{V}\right)=R$
- $C_{v}=\frac{3}{2} R$ (monatomic ideal gas)

For ideal, reversible, Carnot Engine:

- $z=\frac{-w_{\text {exe }}}{q_{J}}-1-\frac{T_{t}}{T_{v}}$

Some entropy relationships:

- $\left(\frac{\partial S}{\partial T}\right)_{p}=\frac{C_{r}}{T}=\frac{n \bar{C}_{r}}{T} \quad ; \quad\left(\frac{\partial S}{\partial T}\right)_{v}=\frac{C_{V}}{T}=\frac{n \bar{C}_{v}}{T}$
- $\Delta S_{\text {manewism }}=-n_{\text {new }} R \sum X_{i} \ln X_{i}$ (where X_{i} is mole ftaction component i)
[see reverse side for more relationships].

Gibb's Paradox: distinguishable vs identical (don't fret)

$$
\Delta S_{\text {total }}=n_{a} R \ln \frac{V_{a}+V_{b}}{V_{a}}+n_{b} R \ln \frac{V_{a}+V_{b}}{V_{b}}
$$

CORRECT

$$
\Delta S_{\text {total }}=0
$$

CORRECT TOO

Gibb's Paradox: distinguishable vs identical (don't fret)

Entropy 2008, 10, 15-18
entropy
ISSN 1099-4300
(c) 2008 by MDPI
www.mdpi.org/entropy/
Full Paper
Gibbs' Paradox and the Definition of Entropy
Robert H. Swendsen
Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
E-Mail: swendsen@cmu.edu
Received: 10 December 2007 / Accepted: 14 March 2008 / Published: 20 March 2008

The Gibbs Paradox and the Distinguishability of Identical Particles

Marijn A.M. Versteegh ${ }^{1,2}$ and Dennis Dieks ${ }^{1}$
${ }^{1}$ Institute for History and Foundations of Science, Utrecht University, P.O. Box 80 010, 3508 TA Utrecht, The Netherlands
${ }^{2}$ Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
(Dated: 3 December 2010)

> statistics, Chemistry 163C

Some references:

www.mdpi.org/lin/entropy/Chua-Thermodynamics.ppt
http://bayes.wustl.edu/et//articles/gibbs.paradox.pdf
http://www.nyu.edu/classes/tuckerman/stat.mech/lectures/lecture 6/node5.html http://www.jstor.org/stable/186086

where we have been

and

what's next

- Count Rumford, 1799
- observed water turning into steam when canon barrel was bored
- work \Leftrightarrow heat

[^0] -
observations: mechanical efficiency of steam engine

- Sadi Carnot, 1824
- efficiency of engines

guiding principles

- Conservation of heat and work (Joule, 1845) 1st LAW OF THERMODYNAMICS
- Clausius, 1860 Entropy $2^{\text {nd }}$ LAW OF THERMODYNAMICS
- Boltzmann, late $19^{\text {th }}$ century, molecular picture of entropy

Clausius

Joule's original water-friction experiment for deternining the mechanical equivalent of beat. (Crown copyright, Science Museum, London.)

Boltzmann
the thermodynamic functions U, H, and S (1st and $2^{\text {nd }}$ laws)

How does knowledge about efficiencies of steam engines, mechanical systems, etc, relate to processes in chemical, biological, and geological systems?

ANSWERED BY:

J. W. Gibbs- arguably the frist great American scientist who combined the concepts of heat and entropy and proposed "[Gibbs] Free Energy", G, a thermodynamic state function that leads to a whole spectrum of applications

End of Lecture

In 1872, long before women were admitted to

 Austrian universities, he met Henriette von Aigentler, an aspiring teacher of mathematics and physics in Graz. She was refused permission to audit lectures unofficially. Boltzmann advised her to appeal, which she did, successfully.In Vienna, Boltzmann not only taught physics but also lectured on philosophy. Boltzmann's lectures on natural philosophy were very popular, and received a considerable attention at that time. His first lecture was an enormous success. Even though the largest lecture hall had been chosen for it, the people stood all the way down the staircase. Because of the great successes of Boltzmann's philosophical lectures, the Emperor invited him for a reception at the Palace.

On September 5, 1906, while on a summer vacation in Duino, near Trieste, Boltzmann hung himself during an attack of depression. ${ }^{[8][9]} \mathrm{He}$ is buried in the Viennese Zentralfriedhof; his tombstone bears the inscription

WIKIPEDIA
The Free Encyclopedia
$S=k \cdot \log W$.
To quote Planck, "The logarithmic connection between entropy and probability was first stated by L. Boltzmann in his kinetic theory of gases".$^{[10]}$ This famous formula for entropy S is ${ }^{[11][12]}$

$$
S=k \log _{e} W
$$

where $k=1.3806505(24) \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ is Boltzmann's constant, and the logarithm is taken to the natural base $e . W$ is the Wahrscheinlichkeit, the frequency of occurrence of a macrostate ${ }^{[13]}$ or, more precisely, the number of possible microstates corresponding to the macroscopic state of a system - number of

[^0]: FIGURE 11. An illustration from Rumford's paper, "An Inquiry Concerning the Source of the Heat Which is Excited by Friction," showing the apparatus used by him in the cannon boring experiment. Figure 1, upper left, shows the cannon as received from the foundry, and Figure 2, below, shows it mounted in the machine used for boring. (Reproduced with the permission of Harvard University Press.)

