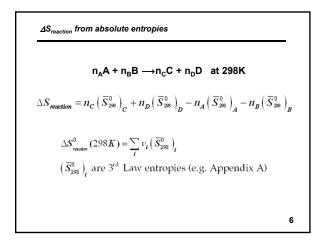
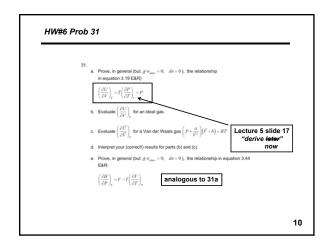

Chemistry 163B
Absolute Entropies
and
Entropy of Mixing

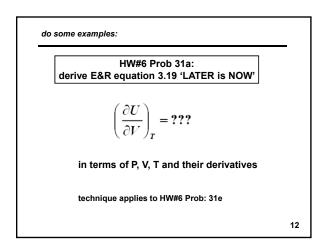
1



Third Law of Thermodynamics

The entropy of any perfect crystalline substance approaches 0 as $T \to 0K$ S=k In Wfor perfectly ordered crystalline substance $W \to 1$ as $T \to 0K \Rightarrow S \to 0$

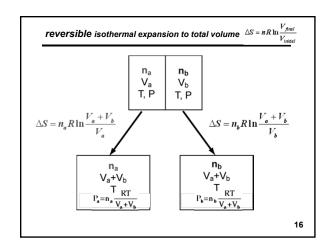

full calculation of S^{o}_{298} for $O_{2}\left(g\right)\;$ (Example Problem 5.9, E&R pp103-104) $\triangle \overline{S} J K^{-1} mol^{-1}$ 0 8.182 $\Delta \overline{S}_A (0 \rightarrow 23.66)$ $\Delta \overline{S}_{\bullet}(III \rightarrow II \text{ at } 23.66K)$ 3.964 19.61 $\Delta \overline{S}_B (23.66 \rightarrow 43.76)$ $\Delta \overline{S}_{\bullet}(II \rightarrow I \text{ at } 43.76K)$ 16.98 $\Delta \overline{S}_{C}$ (43.76 \rightarrow 54.39) 10.13 $\Delta \overline{S}_{\bullet}(I \rightarrow \ell \text{ at } 54.39K)$ 8.181 $\Delta \overline{S}_D (54.39 \rightarrow 90.20)$ 27.06 $\Delta \overline{S}_{\bullet}(\ell \rightarrow g \text{ at } 90.20K)$ 75.59 $\Delta \overline{S}_E (90.20 \rightarrow 298.15)$ 35.27 204.9 J K⁻¹ mol⁻¹

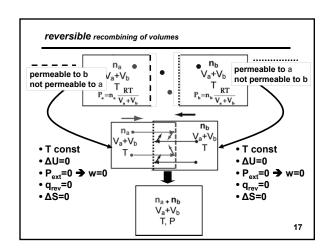

• Hi	gher T \Rightarrow $\left(\frac{\partial S}{\partial T}\right)_p = \frac{C_p}{T} > 0$	
• Hi	gher $P \Rightarrow \frac{\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p < 0}{usually} < 0$	
• Ph	ase S(g) vs S(ℓ) vs S(s)	
the great	reaction the side (reactants vs products) with er number of moles of gas generally has higher S ${}^{2}O oup \Delta S_{\rm reaction} \hspace{0.5cm} \Delta n_{\rm gas} {}^{2}O oup \Delta S_{\rm reaction} \hspace{0.5cm})$	
• Mi	king or dissolving of components $(\ell+\ell)$, $(s+s)$, $(\ell+s)$, $(g+g)$ solutions \Rightarrow	
• (a	+ ℓ) or (g + s) solution ⇒	

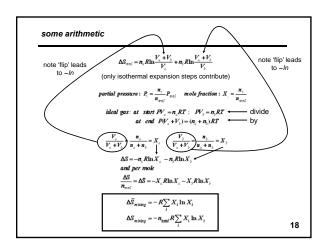
		h higher ma $Cl_2(g)$ <		(a)
				2(9) 60.69 JK ⁻¹ mol ⁻¹
		aced rotationa		
• more i	Ū	tances hav	e	
	C(gr)	C(dia)		
S° ₂₉₈	5.74	2.377 J K ⁻¹	mol ⁻¹	
• more	complex	substances	have	
	HF (g)	H_2O (g)	D ₂ O(q)	
MW		18		amu
C0	172 78	188.83	108 34	I K-1mol-1

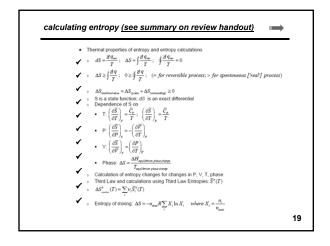
• Thermal properties of entropy and entropy calculations • $dS = \frac{d q_{rec}}{T}$; $\Delta S = \int \frac{d q_{rec}}{T}$; $\oint \frac{d q_{rec}}{T} = 0$	s
\bullet $\Delta S \ge \int \frac{dq}{T}$; $0 \ge \oint \frac{dq}{T}$; (= for reversible process	ss; > for spontaneous ['real'] process) from lecture on 2 rd Law and probability (disorder)
$ \begin{array}{lll} & \Delta \Delta_{control,max} = \Delta S_{control,max} \geq 0 \\ & \leq S & \leq \text{is a state function, } \mathcal{S} & \text{is an exact differential} \\ & & Dependence of S & & \\ & & T, \left[\frac{\partial S}{\partial T}\right]_p = \frac{\overline{C}_p}{T}, \left(\frac{\partial S}{\partial T}\right)_p = \frac{\overline{C}_p}{T} \\ & & P : \left(\frac{\partial S}{\partial P}\right)_p = \left(\frac{\partial P}{\partial T}\right)_p \\ & & & V : \left(\frac{\partial S}{\partial P}\right)_p = \left(\frac{\partial P}{\partial T}\right)_p \\ & & & & & \end{array} $	- Counted to the second of th
Phase: $\Delta S = \frac{\Delta H_{equilibrium phase change}}{T_{equilibrium phase change}}$	Lecture 9, slide 3
Calculation of entropy changes for changes in P, V Third Law and calculations using Third Law Entropy	
$\Delta S_{\text{matter}}^{0}(T) = \sum_{i} v_{i} \overline{S}_{i}^{0}(T)$	

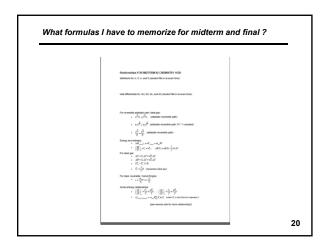
dU= TdS-PdV dH= TdS+VdP		
dH= TdS+VdP		
dA = -SdT-PdV		
dG = -SdT + VdP		
erature:		
$dq_p = n\bar{C_p} dT$		
– PđV		
đs.		
$\left(\frac{\partial S}{\partial T}\right)_{-} = \frac{m\bar{C}_{p}}{T}$		




13


One mole of $\mathrm{CO}_2(\mathbf{g})$ is expanded isothermally and reversibly from V_1 to V_2 . Using the van der Waals equation of state $\left(P+\frac{a}{\overline{V^2}}\right)\!\left(\overline{V}-b\right)\!=RT$ to describe $\mathrm{CO}_2(\mathbf{g})$ calculate w, $\Delta\mathrm{U}$, q, and $\Delta\mathrm{S}$ in terms of V_1 and V_2 and the van der Waals constants a and b.


Entropy of Mixing of Ideal Gasses (EXTRA but not OPTIONAL) E&R≈ Sec 6.6


 $\begin{array}{c|c} \textbf{Entropy of mixing for ideal gas (distinguishable particles)} \\ \\ \bullet \textbf{ isolated from surroundings} \\ \textbf{q} \textbf{sys} = \textbf{q} \textbf{surr} = 0 \\ \textbf{w} = 0 \\ \\ \bullet \Delta \textbf{S}_{\textbf{surr}} = 0 \\ \\ \bullet \Delta \textbf{S}_{\textbf{universe}} > 0 \\ \\ \bullet \Delta \textbf{S}_{\textbf{sys}} > 0 = ??? \\ \\ \hline \\ \begin{array}{c|c} \textbf{n}_a & \textbf{n}_b \\ \textbf{V}_a & \textbf{V}_b \\ \textbf{T}, P & \textbf{T}, P \\ \\ \hline \\ \textbf{n}_{a+} \textbf{n}_{b} \\ \textbf{V}_{a} + \textbf{V}_b \\ \textbf{T}, P \\ \\ \hline \end{array}$

