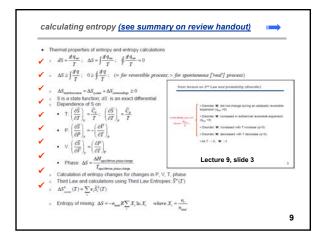
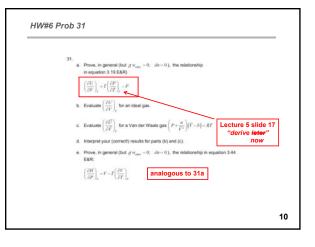
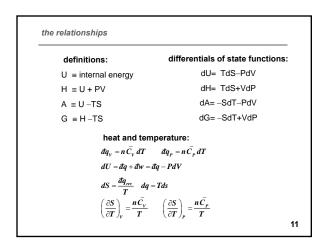
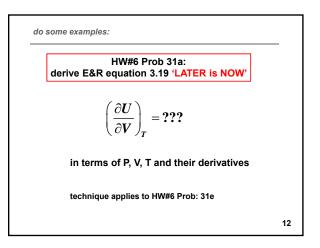

Chemistry 163B Absolute Entropies and Entropy of Mixing

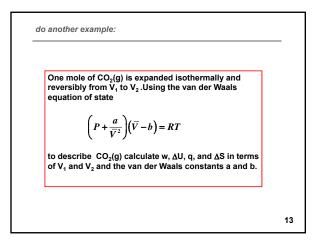
Substance	ΔH ^o f ΔHj (kJ mol ⁻¹)	ΔG^{o}_{f} ΔG^{o}_{f} (kJ mol ⁻¹)	S ⁰ S' (I mol ⁻¹ K ⁻¹)	$C_{\overline{P},m}^{*}\left(J\operatorname{mol}^{-1}K^{-1}\right)$	Atomic or Molecular Weight (amu
Carbon					
Graphite(r) Diamond(r) C(g) CO(g) Hydrogen	0 1.89 716.7 -110.5	0 2.90 671.2 -137.2	5.74 2.38 158.1 197.7	8.52 6.12 20.8 29.1	12.011 12.011 12.011 28.011
$H_2(g)$ $H_2O(g)$ $H_2O(J)$ $H_2O(J)$ $H_2O(g)$ $H_2O_2(g)$ $H^*(aq)$	0 -241.8 -285.8 -136.3 0	0 -228.6 -237.1 -105.0	130.7 188.8 70.0 48.0 232.7 0	28.8 33.6 75.3 36.2 (273 K) 43.1	2.016 18.015 18.015 18.015 34.015 1.008
OH ⁺ (aq) OKygen	-230.0	-157.24	-10.9		17.01
O ₂ (g) O(g) O ₃ (g) OH(g) OH [*] (aq)	0 249.2 142.7 39.0 -230.0	0 231.7 163.2 34.22 -157.2	2052 161.1 238.9 183.7 -10.9	29.4 21.9 39.2 29.9	31.999 15.999 47.998 17.01 17.01




	$\Delta \overline{S} J K^{-1} mol^{-1}$
$\overline{S}(0K)$	0
$\Delta \overline{S}_{A} (0 \rightarrow 23.66)$	8.182
$\Delta \overline{S}_{\bullet}(III \rightarrow II \ at \ 23.66K)$	3.964
$\Delta \overline{S}_{B} (23.66 \rightarrow 43.76)$	19.61
$\Delta \overline{S}_{\bullet}(II \rightarrow I \text{ at } 43.76K)$	16.98
$\Delta \overline{S}_{c} (43.76 \rightarrow 54.39)$	10.13
$\Delta \overline{S}_{\bullet}(I \rightarrow \ell \ at \ 54.39K)$	8.181
$\Delta \overline{S}_{D}$ (54.39 \rightarrow 90.20)	27.06
$\Delta \overline{S}_{\bullet}(\ell \rightarrow g \ at \ 90.20K)$	75.59
$\Delta \overline{S}_{E} (90.20 \rightarrow 298.15)$	35.27
total	204.9 J K ⁻¹ mo


∠S _{reaction} from absolute entropies
n _A A + n _B B →n _c C + n _D D at 298K
$\Delta \boldsymbol{S}_{reaction} = \boldsymbol{n}_{C} \left(\overline{\boldsymbol{S}}_{\scriptscriptstyle 298}^{0} \right)_{C} + \boldsymbol{n}_{D} \left(\overline{\boldsymbol{S}}_{\scriptscriptstyle 298}^{0} \right)_{D} - \boldsymbol{n}_{A} \left(\overline{\boldsymbol{S}}_{\scriptscriptstyle 298}^{0} \right)_{A} - \boldsymbol{n}_{B} \left(\overline{\boldsymbol{S}}_{\scriptscriptstyle 298}^{0} \right)_{B}$
$\Delta \boldsymbol{S}_{\text{reaction}}^{0} \left(298\boldsymbol{K} \right) = \sum_{i} \nu_{i} \left(\overline{\boldsymbol{S}}_{298}^{0} \right)_{i}$
$\left(ar{S}^{\scriptscriptstyle 0}_{\scriptscriptstyle 298} ight)_{\!i}$ are 3 rd Law entropies (e.g. Appendix A)


qualitative factors affecting molecular entropy	
• Higher T \Rightarrow $\left(\frac{\partial S}{\partial T}\right)_{p} = \frac{C_{p}}{T} > 0$	
• Higher P \Rightarrow $\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P} < 0$	
• Phase S(g) vs S(<i>l</i>) vs S(s)	
(in a reaction the side (reactants vs products) with the greater number of moles of gas generally has higher S Δn_{gas} >0 $\Rightarrow \Delta S_{reaction}$ Δn_{gas} <0 $\Rightarrow \Delta S_{reaction}$)	
• Mixing or dissolving of components (ℓ+ℓ), (s+s), (ℓ+s), (g+g) solutions ⇒	
• (g + ℓ) or (g + s) solution \Rightarrow	7


		higher ma		
0 2	$F_{2}(g) < (g)$	$Cl_2(g) < 22.07 2$	$Br_2(g) < l_2$	(g) 0.69 JK ⁻¹ mol ⁻¹
		ced rotational		
(
more i	igid subst	tances hav	е	
	C(gr)	C(dia)		
S°_298	5.74	2.377 JK ⁻¹	mol ⁻¹	
more	complex s	ubstances	have	
	HF (g)	H ₂ O (g)	$D_2O(g)$	
MW	20	18	20	amu
Sº ₂₉	3 173.78	188.83	198.34	J K ⁻¹ mol ⁻¹

