Chemistry 163B
Lecture 5 Winter 2014
Challenged Penmanship

Notes




total differential (math handout #4: E&R ch. 3)

infinitesimal change in value of state function (well behaved function)

f(x,y) awell behaved function

of
total change in f > df =(—j dx +

]

change in f
per unit change in x
(along x direction)

change in f
per unit change iny
(along y direction)

amount of
change iny

amount of | 4
change in x




differential of product (product rule)

d(Xxy) = ydx + xdy




example of implication of total differentials

First Law

du, = dg,, +dw,, +dn, (n=number of moles; dn=0 for closed system)

sys

U is state function = dU_ is exact differential

dn =0 (closed system)
math first law
du(T,P) = (Z—LT’) dT +(2—g) dP = du,, +dw,,
P T
OR

math first law
dU(T.V) = [@j dT +(ﬂj 4V = dg,, +dw,,
oT ), oV ).




“divide through by ??”

math handout #6

dU (T, P) =(Z—LT’) dT {%ﬁj dp
P T

“divide through by dV holding x (something else) constant “

& AFLE AR

later special simplification if x=P or T




two relationships for ideal gasses: a («sec) look ahead

« for any substance
dU, =dg, =nCv dT and AU, :Inév dT for a constant volume process

* Dbut for an ideal gas
dU =nC,dT and AU =nC, AT for ANY path (not only constant V process)

\_

~

J

/- for ideal gas \

C,=C,+R
* monatomic ideal gas
~ 3 ~ 5
CV ZER CP ZER

\- /




Ideal gas AU= nC,AT for ANY path (not only constant V process)

dU, =dg, =nCv dT and AU, :j nCyv dT for a constant volume process

dU =nC,dT and AU =nC, AT for ANY path (not only constant V process)

(general, w_,_ =0, dn=0) ideal gas
du =(6_Uj dT +(6—U) dv dU =nCy dT +(Z—\ij dv
oT )y oV J; / .
dU =dg - PdV but 1
oV C a_U =0
duvz(a—_l_)v dT:d’qV:nCV dT (avj_r
(a_uj =nCv dU =nCydT
oT ), B
A =ntvdl J{a_vl dv even if V not constarjt (i.e. any path)

AU along general path where both T (constv) and V (const T) vary
AU =nCy AT nada




Cp = C,+nR for ideal gas

for only P-V work and closed system (dw,,.. =0, dn=0)
dU =dg-P,dV

du, =dg, =nC,dT  dU,=dg, -PdV,
dy, =dU , + PV,

), (&), e
—_— = | — — C R
al Tl (@) e (@)
dT /), oT ), or ),
for monatomic ideal gas

PV =nRT and U :gnRT
(6Uj 3 (au)
- =—nNR=| —
or ), 2 oT ),

nC, = 3R+ P(szﬁnR
2 P 2




1st Law recapitulation

U = internal energy

dUsys = dqsys + dWsys + dnsys
dU,, =-dU_,, (energyc
dU is exact differential

U is a state function

(n=number of moles; dn=0 for closed system)

onserved )

completely general

for only P-V work and closed system (dn=0)

dU =dy-P, dV

« Constant volume process dU,= dqv AU,=(,

« Adiabatic process du=dw AU=W




enthalpy: q for process at constant Pressure

H=U+P,,V  (definition of enthalpy, H)

INt

since U is state function and P, V are
state variables, H is also a

STATE FUNCTION completely general

why a new state function you might ask??
du, =dg, ; AU, =q, heatatconstantvolume

but most reactions and many physical
processes are carried out at constant P

desire state function for qp, heat at constant pressure
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enthaply: H, a state function for heat transfer at constant pressure

H=U+PV

dH =dU + PdV +VdP

dH =dq-PdV +dw_, .+ PdV +VdP
dH =dg+VdP +dw,, .,

and at P=constantand dw_,_ =0

other

dH, =dq,

AH, =0, as advertised !!

AH, =0, atconstP now

other

AH, >0 endothermic (heat gained by system)

AH, <0 exothermic (heat lost by system)
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AH ideal gas

AH, =q, = I nC,dT =nC,AT (general, w_, =0, dn=0)
ideal gas

H=U+PV =U+nRT
dH =dU +nRdT (general for ideal gas)

dH =nC,dT +nRdT (general for idel gas, even V not const)
dH =n(C, + R)dT
dH =nC.dT IDEAL GAS ANYTIME,
EVEN IF P NOT CONSTANT
AH= nC_,AT ideal gas general (w_,_ =0, dn=0)
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manipulating thermodynamic functions: fun and games

for example:
HW#3

12. Derive the following for any closed system,
with only P-V work:

U (v
oV ).\ aT ),

C, =

13




total differential for U(T,V,n) and H(T,P,n)

u(,v,n,n,,...ny)

oT )y n

H(T,P,n,n,,...,n,)

ol Jp, oP ); .

for now closed system all dn,=0
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H(T,P): some manipulations and relationships (closed system)

dH =dg+VdP closed system, dw_ =0
'divide by dT, holding P constant' math handout #6 |
a_H — @ +V (a_Pj
ot ), \at ), " laT ),
M) (99 _ne
ot ), \dT),

'divide by dP, holding T constant'

M) (%) (2
oP ). \dp ). \eP ),
a_H — @ +V
P ). \dP ),
dH:(ﬁj dn(ﬁJ P
or ), oP ).

dH =nC,dT J{a@—ll;lj dP  eqns. 3.30-3.32 E&R (p. 56 [52], )
T
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U(T,V): some manipulations and relationships (closed system)

dU =dq-PdV closed system, dw, =0

other

'divide by dT, holding V constant’

U\ _(du _p(cﬂj
ot ), \dT ), oT ),
V) _(d9) _.&
ot ), \dT ), v

'divide by dV, holding T constant'

u) _(da _p(ﬂj
v ). \av ) T v )
Uy _(da) o,
™). (v ).
du :(@j dT +(ﬁJ dv
T ), N ).

dU = n5VdT +(2—\ij dVv eqn. 3.12-3.15 E&R (p 50 [46],,)
T
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save for later when we have tools from 2"d Law of Thermodynamics

,_m need 2" Law

to evaluate this
auj v
oV -

dU = név dT + (_ in terms of P,V,T

(auj —T(a—Pj -P E&R egn.3d.19
oT )\

many of the results in E&R ch 3 use
this [yet] ‘unproven’ result;
we will derive later
class should use result in HW3 #13*
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some important relationships between C; and C,,

1(@} -C, and E(Qj _¢,
n\ dT ), n\ ol ),

to get relationship between C; and C,,

one needs to have relationship
iInvolving both H and U; soooo

H=U+PV
dH =dU + PdV +VdP
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continuing with relating C; and C,,

H=U+PV
dH =dU + PdV +VdP
divide by dT, P constant

oT oT ), \aT
nC, = &2 P N
T oT

P
now to get ( j

du =nC, dT +(—\Lj dVv

T

|
o) e

(ﬁj _(Y) L p[M +V(E
P P oT

)
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let’s finish C, vs C,, (very general relationship) ~E&R 3.37

(
energy to

raise T 1°
const P

(Q/ol changesj)

)

nC, =nC, +

/

energy to
raise T 1°
const V

auj (av \
ov )\ aT

(Qj +P
oV );

A

(potentiap
energy as
molecules
‘separate’
per unit
volume

\change)

+ P(a—vj
oT ),

v

energy
lost as
P-V work
per unit
volume

volume change
er T change of 1

o]

\ change )
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Cp vs C,, for ideal gas

nC, =nC, + (Qj +P (gj
N ). oT ),

for ideal gas

V:nRT
P

Energy, U is function of ONLY T, U(T)
V) _nR

or ), P

oU

)0

nC, =nC, +[0+ P]?

nC, =nC, +nR

C,=C, +R for ideal gas
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experimental C,, and C; for selected gasses

Monatomic

Monatomic Ne 12.7 20.8

Monatomic  Ar 12.5 20.8
Diatomic H, 2&_4 28.8
Diatomic 0O, 21.0 29.3
Diatomic N, 20.8 29.1
Triatomic HO 27.0 35.4
Polyatomic  CHy 271 354

8.45

8.32

8.32

8.356

8.36

1.64

1.67

1.41

1.40

1.40

1.31

1.31

R=8.31 J mol-' K-

ideal gas
C.,-C, =R
monatomic C, :gR
: . =~ 5
diatomic C,, EER
J mol™ K™
§R:12.47
2
ER:20.78
2
ZR =29.10
2

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2
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In section derive equation following equation

hC, =nC, + (a_Hj v (ipj
P ). ot ),

start with
dU =dH - PdV -VdP
divide by dT with V constant

and then boogie along as we just did!!
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First Law: ideal gas calculations

relationships that apply to ideal gasses for all conditions with w_, . =0
and constant composition (some also apply more generally):

other™

AU =q+Ww w,, =—[P,.dv PV =nRT
G, = nJ'CdeT ge =n[C.dT -
? . 2 . CP — CV + R
=nC,AT =nC,AT
H=U+PV AU any conditions — nc—:V AT AHany conditions nCTPAT
monatomic ideal gas ~ _3 R C, = § R
CV _5 P 2
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