Chemistry 163B

Lecture 5 Winter 2014

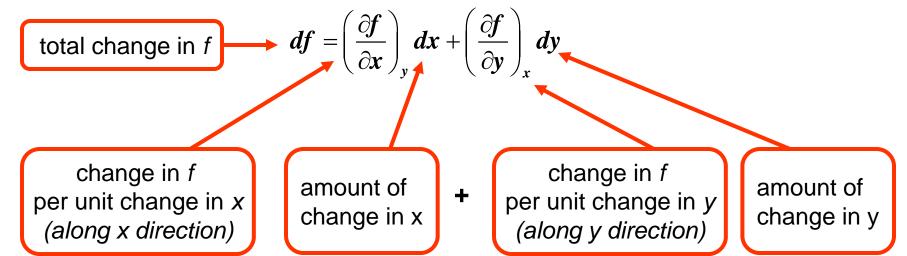
Challenged Penmanship

Notes

total differential (math handout #4; E&R ch. 3)

infinitesimal change in value of state function (well behaved function)

f(x,y) a well behaved function



differential of product (product rule)

$$d(xy) = ydx + xdy$$

example of implication of total differentials

First Law

 $dU_{sys} = dq_{sys} + dw_{sys} + dn_{sys}$ (n=number of moles; dn=0 for closed system)

U is state function $\Rightarrow dU_{sys}$ is exact differential

dn = 0 (closed system)

$$dU(T,P) \stackrel{math}{=} \left(\frac{\partial U}{\partial T}\right)_{P} dT + \left(\frac{\partial U}{\partial P}\right)_{T} dP \stackrel{first law}{=} dq_{sys} + dw_{sys}$$

OR

$$dU(T,V) \stackrel{math}{=} \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV \stackrel{first law}{=} dq_{sys} + dw_{sys}$$

"divide through by ??"

math handout <u>#</u>6

$$dU(T,P) = \left(\frac{\partial U}{\partial T}\right)_P dT + \left(\frac{\partial U}{\partial P}\right)_T dP$$

"divide through by dV holding x (something else) constant "

$$\left(\frac{\partial U}{\partial V}\right)_{X} = \left(\frac{\partial U}{\partial T}\right)_{P} \left(\frac{\partial T}{\partial V}\right)_{X} + \left(\frac{\partial U}{\partial P}\right)_{T} \left(\frac{\partial P}{\partial V}\right)_{X}$$

later special simplification if x=P or T

two relationships for ideal gasses: a (µsec) look ahead

(will prove rigorously in next lecture, but gthis is the next lecture)

- for any substance $dU_V = dq_V = n \overline{C}_V dT$ and $\Delta U_V = \int n \overline{C}_V dT$ for a constant volume process
- but for an ideal gas

 $dU = n\overline{C}_V dT$ and $\Delta U = n\overline{C}_V \Delta T$ for ANY path (not only constant V process)

[other parts of path, changes of P and V with constant T, give zero contribution to ΔU]

for ideal gas

$$\overline{C}_P = \overline{C}_V + R$$

monatomic ideal gas

$$\overline{C}_V = \frac{3}{2}R \qquad \overline{C}_P = \frac{5}{2}R$$
 [simple proof coming soon]

$\Delta U = n\overline{C}_V \Delta T$ for ANY path (not only constant V process) ideal gas

$$dU_V = dq_V = n \overline{C}_V dT$$
 and $\Delta U_V = \int n \overline{C}_V dT$ for a constant volume process $dU = n \overline{C}_V dT$ and $\Delta U = n \overline{C}_V \Delta T$ for ANY path (not only constant V process)

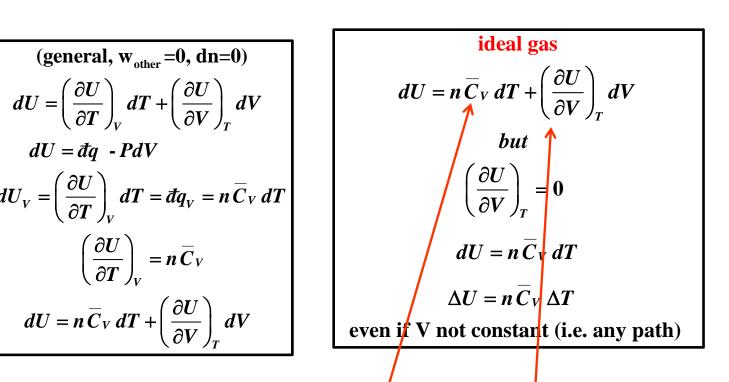
(general,
$$\mathbf{w}_{\text{other}} = \mathbf{0}$$
, $\mathbf{dn} = \mathbf{0}$)
$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

$$dU = d\mathbf{q} - PdV$$

$$dU_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} dT = d\mathbf{q}_{V} = n \overline{C}_{V} dT$$

$$\left(\frac{\partial U}{\partial T}\right)_{V} = n \overline{C}_{V}$$

$$dU = n \overline{C}_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$



∆U along general path where both T (const V) and V (const T) vary $\Delta U = n C_V \Delta T$ nada

$C_P = C_V + nR$ for ideal gas

for only P-V work and closed system ($\bar{d}w_{other} = 0$, dn=0)

$$dU = \bar{d}q - P_{ext}dV$$

$$dU_{V} = \overline{d}q_{V} = n\overline{C_{V}} dT$$

$$dU_{p} = \overline{d}q_{p} - PdV_{p}$$

$$\overline{d}q_{p} = dU_{p} + PdV_{p}$$

$$\left(\frac{\overline{d}q}{dT}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = n\overline{C_{V}}$$

$$\left(\frac{\overline{d}q}{dT}\right)_{P} = n\overline{C_{P}} = \left(\frac{\partial U}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P}$$

for monatomic ideal gas

$$PV = nRT$$
 and $U = \frac{3}{2}nRT$

$$\left(\frac{\partial U}{\partial T}\right)_{V} = \frac{3}{2}nR = \left(\frac{\partial U}{\partial T}\right)_{P}$$

$$n\overline{C}_P = \frac{3}{2}nR + P\left(\frac{nR}{P}\right) = \frac{5}{2}nR$$

1st Law recapitulation

U ≡ internal energy

$$dU_{sys} = dq_{sys} + dw_{sys} + dn_{sys}$$
 (n=number of moles; dn=0 for closed system)

$$dU_{sys} = -dU_{surr}$$
 (energy conserved)

dU is exact differential

U is a state function

completely general

for only P-V work and closed system (dn=0)

$$dU = d\bar{q} - P_{ext}dV$$

- Constant volume process $dU_V = dq_V \Delta U_V = q_V$
- Adiabatic process $dU = dw \Delta U = w$

enthalpy: q for process at constant Pressure

$$H\equiv U+P_{int}V$$
 (definition of enthalpy, H)

since U is state function and P, V are state variables, H is also a

STATE FUNCTION

completely general

why a new state function you might ask??

$$dU_V = dq_V$$
 ; $\Delta U_V = q_V$ heat at constant volume

but most reactions and many physical processes are carried out at constant P

desire state function for q_P , heat at constant pressure

enthaply: H, a state function for heat transfer at constant pressure

$$H \equiv U + P_{\text{int}}V$$
 $dH = dU + PdV + VdP$
 $dH = d\bar{q} - PdV + d\bar{w}_{other} + PdV + VdP$
 $dH = d\bar{q} + VdP + d\bar{w}_{other}$
and at P=constant and $d\bar{w}_{other} = 0$
 $dH_P = d\bar{q}_P$
 $\Delta H_P = q_P$ as advertised!!

 $\Delta H_P = q_P$ at const P no w_{other} $\Delta H_P > 0$ endothermic (heat gained by system) $\Delta H_P < 0$ exothermic (heat lost by system)

∆H ideal gas

$$\Delta H_P = q_p = \int n\overline{C}_P dT \approx n\overline{C}_P \Delta T \quad \text{(general, } w_{\text{other}} = 0, \text{ dn} = 0)$$
 ideal gas
$$H \equiv U + PV = U + nRT$$

$$dH = dU + nRdT \quad \text{(general for ideal gas)}$$

$$dH = n\overline{C}_v dT + nRdT \quad \text{(general for idel gas, even V not const)}$$

$$dH = n(\overline{C}_v + R)dT$$

$$dH = n\overline{C}_P dT \quad \text{IDEAL GAS ANYTIME,}$$

$$\text{EVEN IF P NOT CONSTANT}$$

$$\Delta H = n\overline{C}_P \Delta T \quad \text{ideal gas general (} w_{\text{other}} = 0, \text{ dn} = 0)$$

manipulating thermodynamic functions: fun and games

for example: HW#3

12. Derive the following for any closed system, with only P-V work:

$$C_{V} = -\left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{U}$$

total differential for U(T,V,n) and H(T,P,n)

$$U(T,V,n_1,n_2,...,n_N)$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V,n} dT + \left(\frac{\partial U}{\partial V}\right)_{T,n} dV + \sum_{i=1}^{N} \left(\frac{\partial U}{\partial n_i}\right)_{T,V,n_i \neq n_i} dn_i$$

$$H(T,P,n_1,n_2,...,n_N)$$

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P,n} dT + \left(\frac{\partial H}{\partial P}\right)_{T,n} dP + \sum_{i=1}^{N} \left(\frac{\partial H}{\partial n_i}\right)_{T,P,n_i \neq n_i} dn_i$$

for now closed system all dn_i=0

H(T,P): some manipulations and relationships (closed system)

$$dH = dq + VdP$$
 closed system, $dw_{other} = 0$

'divide by dT, holding P constant'

math handout #6

$$\left(\frac{\partial H}{\partial T}\right)_{P} = \left(\frac{dq}{dT}\right)_{P} + V\left(\frac{\partial P}{\partial T}\right)_{P}
\left(\frac{\partial H}{\partial T}\right)_{P} = \left(\frac{dq}{dT}\right)_{P} = n\bar{C}_{P}$$

'divide by dP, holding T constant'

$$\left(\frac{\partial H}{\partial P}\right)_{T} = \left(\frac{dq}{dP}\right)_{T} + V\left(\frac{\partial P}{\partial P}\right)_{T}
\left(\frac{\partial H}{\partial P}\right)_{T} = \left(\frac{dq}{dP}\right)_{T} + V$$

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P} dT + \left(\frac{\partial H}{\partial P}\right)_{T} dP$$

$$dH = n\overline{C}_{P} dT + \left(\frac{\partial H}{\partial P}\right)_{T} dP \qquad \text{eqns. 3.30-3.32 E\&R (p. 56 [52]_{2nd})}$$

U(T,V): some manipulations and relationships (closed system)

$$dU = dq - PdV$$
 closed system, $dw_{other} = 0$

'divide by dT, holding V constant'

$$\left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{dq}{dT}\right)_{V} - P\left(\frac{\partial V}{\partial T}\right)_{V}$$

$$\left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{dq}{dT}\right)_{V} = n\bar{C}_{V}$$

'divide by dV, holding T constant'

$$\left(\frac{\partial U}{\partial V}\right)_{T} = \left(\frac{dq}{dV}\right)_{T} - P\left(\frac{\partial V}{\partial V}\right)_{T}$$

$$\left(\frac{\partial U}{\partial V}\right)_{T} = \left(\frac{dq}{dV}\right)_{T} - P$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

$$dU = n\overline{C}_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV \quad \text{eqn. 3.12-3.15 E&R (p 50 [46]_{2nd})}$$

save for later when we have tools from 2nd Law of Thermodynamics

$$dU = n \overline{C}_V dT + \left(\frac{\partial U}{\partial V} \right)_T dV$$
 need 2nd Law to evaluate this in terms of P,V,T

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V} - P \quad E \& R \quad eqn.3.19$$

many of the results in E&R ch 3 use this [yet] 'unproven' result; we will derive later class should use result in HW3 #13*

some important relationships between C_P and C_V

$$\frac{1}{n} \left(\frac{\partial H}{\partial T} \right)_{P} = \overline{C}_{P} \quad and \quad \frac{1}{n} \left(\frac{\partial U}{\partial T} \right)_{V} = \overline{C}_{V}$$

to get relationship between C_P and C_V one needs to have relationship involving both H and U; soooo

$$H = U + PV$$

$$dH = dU + PdV + VdP$$

continuing with relating C_P and C_V

$$H = U + PV$$

$$dH = dU + PdV + VdP$$

divide by dT, P constant

$$\begin{pmatrix} \frac{\partial H}{\partial T} \end{pmatrix}_{P} = \begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{P} + P \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P} + V \begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{P}
n \overline{C}_{P} = \begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{P} + P \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}
now to get
$$\begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{P}$$

$$dU = n \overline{C}_{V} dT + \begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} dV$$

$$\begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{P} = n \overline{C}_{V} + \begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$$$

let's finish C_P vs C_V (very general relationship) ~E&R 3.37

$$n\overline{C}_{P} = \begin{pmatrix} \frac{\partial U}{\partial T} \end{pmatrix}_{P} + P \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$

$$n\overline{C}_{P} = n\overline{C}_{V} + \begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P} + P \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$

$$n\overline{C}_{P} = n\overline{C}_{V} + \begin{bmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_{T} + P \end{bmatrix} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P}$$
volume change per T change of 1°
$$\begin{array}{c} \text{energy to} \\ \text{raise T 1°} \\ \text{const V} \\ \text{(vol changes)} \end{array}$$

$$\begin{array}{c} \text{energy to} \\ \text{raise T 1°} \\ \text{const V} \\ \text{volume} \\ \text{change} \\ \text{change} \end{array}$$

C_P vs C_V for ideal gas

$$n\overline{C}_{P} = n\overline{C}_{V} + \left[\left(\frac{\partial U}{\partial V} \right)_{T} + P \right] \left(\frac{\partial V}{\partial T} \right)_{P}$$

for ideal gas

$$V = \frac{nRT}{P}$$

Energy, U is function of ONLY T, U(T)

$$\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{nR}{P}$$

$$\left(\frac{\partial U}{\partial V}\right)_{T} = \mathbf{0}$$

$$n\overline{C}_P = n\overline{C}_V + [0+P]\frac{nR}{P}$$

$$n\overline{C}_{P} = n\overline{C}_{V} + nR$$

$$\overline{C}_P = \overline{C}_V + R$$
 for ideal gas

experimental C_V and C_P for selected gasses

Nature of gas	Gas	C, (J mol ⁻¹ K ⁻¹)	C _p (J mol ⁻¹ K ⁻¹)	(J	C _p – C _q mol ⁻¹ K ⁻²)	γ
Monatomic	Не	12.5	20.8		8.30	1.66
Monatomic	Ne	12.7	20.8		8.12	1.64
Monatomic	Ar	12.5	20.8		8.30	1.67
Diatomic	H_2	20.4	28.8		8.45	1.41
Diatomic	O ₂	21.0	29.3		8.32	1.40
Diatomic	N_2	20.8	29.1		8.32	1.40
Triatomic	H_2O	27.0	35.4		8.35	1.31
Polyatomic	CH ₄	27.1	35.4		8.36	1.31

R=8.31 J mol⁻¹ K⁻¹

ideal gas

$$\overline{C}_P - \overline{C}_V = R$$

$$\overline{C}_{P} - \overline{C}_{V} = R$$
monatomic $\overline{C}_{V} = \frac{3}{2}R$

diatomic
$$\overline{C}_{V} \cong \frac{5}{2}R$$

$$\boldsymbol{J} \boldsymbol{mol}^{-1} \boldsymbol{K}^{-1}$$

$$\frac{3}{2}$$
R = 12.47

$$\frac{5}{2}\mathbf{R} = 20.78$$

$$\frac{7}{2}$$
R = 29.10

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2

in section derive equation following equation

$$n\overline{C}_{V} = n\overline{C}_{P} + \left[\left(\frac{\partial H}{\partial P} \right)_{T} - V \right] \left(\frac{\partial P}{\partial T} \right)_{V}$$

start with

$$dU = dH - PdV - VdP$$

divide by dT with V constant and then boogie along as we just did!!

First Law: ideal gas calculations

relationships that apply to **ideal gasses** for all conditions with w_{other}=0 and constant composition (some also apply more generally):

$\Delta U = q + w$	$w_{PV} = -\int P_{ext} dV$	PV = nRT
$q_{V} = n \int \overline{C}_{V} dT$ $\stackrel{?}{=} n \overline{C}_{V} \Delta T$	$q_{P} = n \int \overline{C}_{P} dT$ $\stackrel{?}{=} n \overline{C}_{P} \Delta T$	$\overline{C}_P = \overline{C}_V + R$
$H \equiv U + PV$	$\Delta U_{any\ conditions} = n\overline{C}_V \Delta T$	$\Delta H_{any\ conditions} = n\overline{C}_P \Delta T$
monatomic ideal gas	$\overline{C}_V = \frac{3}{2}R$	$\overline{C}_P = \frac{5}{2}R$