1

0 = mienar energy			
$dU_{sys} = dq_{sys} + dw_{sys} + dn_{sys}$ (n=nu	nber of moles; du	=0 for closed system	
$dU_{sys} = -dU_{sur}$ (energy conserv	red)		
dU is exact differential			
U is a state function	completely general		
dU = d	tq – P _{ent} d V		
	ess dll.= đđ	$\Delta U_{v} = q_{v}$	
 Constant volume proce 		x	

∆H ideal gas
$\Delta H_p = q_p = \int n \bar{C}_p dT \approx n \bar{C}_p \Delta T \text{(general, } \mathbf{w}_{\text{other}} = 0, \text{ dn} = 0\text{)}$
ideal gas
$H \equiv U + PV = U + nRT$
dH = dU + nRdT (general for ideal gas)
$dH = n\overline{C}_{q}dT + nRdT$ (general for idel gas, even V not const)
$dH = n(\bar{C}_{v} + R)dT$
$dH = n\overline{C}_{p}dT$ IDEAL GAS ANYTIME,
EVEN IF P NOT CONSTANT
$\Delta H = n \overline{C}_{p} \Delta T$ ideal gas general (w _{other} =0, dn=0)

12

manipulating thermodynamic functions: fun and games

for example: HW#3

12. Derive the following for any closed system, with only P-V work:

$$C_{V} = -\left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{U}$$
13

Nature of	Gas	C,	C,	C, -C,	Ŷ	R=8.31 J mol ⁻¹ K ⁻¹
Manatamia	Ие	10.5	20.8	(0 II.01 II.)	1.66	ideal gas
Monatomic	ne	12.5	20.8	0.30	1.00	$c_p - c_{\gamma} = R$
Monatomic	Ne	12.7	20.8	8.12	1.64	monatomic $\bar{C}_{\gamma} = \frac{3}{2}I$
Monatomic	Ar	12.5	20.8	8.30	1.67	
Diatomic	H_{2}	20.4	28.8	8.45	1.41	diatomic $C_{\gamma} \cong \frac{1}{2}I$
Diatomic	O ₂	21.0	29.3	8.32	1.40	$J mol^{-1} K^{-1}$
Diatomic	N_2	20.8	29.1	8.32	1.40	$\frac{3}{2}R = 12.47$
Triatomic	H_2O	27.0	35.4	8.35	1.31	5 0 00 00
Polyatomic	CH_4	27.1	35.4	8.36	1.31	$\frac{-}{2}$ R = 20.78

relationships that a and constant com	pply to ideal gasses for all position (some also apply r	conditions with w _{other} =0 nore generally):
$\Delta U = q + w$	$w_{PV} = -\int P_{ext} dV$	PV = nRT
$q_{\nu} = n \int \bar{C}_{\nu} dT$ $\stackrel{?}{=} n \bar{C}_{\nu} \Delta T$	$ q_{P} = n \int \overline{C}_{P} dT \\ \stackrel{?}{=} n \overline{C}_{P} \Delta T $	$\overline{C}_P = \overline{C}_V + R$
$H \equiv U + PV$	$\Delta U_{\rm any \ conditions} = n \bar{C}_V \Delta T$	$\Delta H_{any \ conditions} = n \overline{C}_p \Delta T$
monatomic ideal gas	= 3_	ā _ 5 p