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Chemistry 163B
Lecture 5 Winter 2014
Challenged Penmanship

Notes

notes for lecture 5

total differential (math handout #4; E&R ch. 3)

infinitesimal change in value of state function (well behaved function)

Sfix.yi awell behaved function

of o
total change in f L/ :(*j Aot | = Ay
/ a“/ e \
change in f amount of change in f amount of
per unit change in x N + | per unit change iny N
change in x change iny

(along x direction) (along y direction)

differential of product (product rule)

d(xy) = vdx + xdy

example of implication of total differentials

FirstLaw
dU,, =y, +adw,, +dn,, (n=number of meles, dn=0 for closed system)

Uis state function = dU,, is exact differential

dn=0 (closed system)

weth { 5T aU foarton
dU(T.P) = [—j a’T+[—J dF = dy,, +aw,,
T J, P ),

OFR.

mah, Sirstiaw
dU(T.F) :[ﬁl dT+[§] avr =y,
a7 ), oF ). on o

“divide through by ??”

o

AR
ar sy

dU(T.P)=| % | ar+| dp

“divide through by dV holding x (something else) constant “

A

U arP
|

P J; F v

_|i ‘£ +|
L ler Llar ),

later special simplification if x=P or T

two relationships for ideal gasses: a («sec) look ahead
(will prove rigorously in next lecture, but gthis is the next lecture)

« for any substance
7. = dg, =nCv dT and AU,.={nC-dl’ fora constant volume process

« but for an ideal gas
dti =n&,dl and AU = nC, AT for ANY path (not enly constant V process

[other parts of path, changes of P and V with constant T, give zero contribution to AU]

for ideal gas
C.=C,+R

monatomic ideal gas

3 :
C,=ZR C.==R

2
[simpfe proof coming soonj
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ideal gas AU =nC AT for ANY path (not only constant V process)

[ U, =dif,. =nCrdl and AU, =[nC dF for a constant volune process ]

a7 =nC,dl and AU = nC, AT for ANY path (not only constant V processy

(general. w, =0, du=0) idenl gas
=) ar+[E) & dU-aEvdr+[£] av
ar )\ ) ).
AUl =dy - PdV but
au - a
IJU.-=(E]‘_M=M.=HC‘\-M’ [W]; o
X\ nr dU = uCyf d
ar J. N
_ ar AU = nCyAT
AU =nt: ﬂ'+[§1ay evenif V not constayt (i.e. any path)

AU along general path where both T (const V) and V (const T) vary
AL =nCv AT nadea

Cp, =C, +nR for ideal gas

for only P-V work and closed system (dw ,,, =0, du=0)
dU=dg- R dV

dU, =dg, =nC, dT du, =ay, - Fdv,
dg, = dU, + PV,

B (@A)
dr )y \9T )y —| =nC,=| — | +P| —
» o /s »

or

for monatomic ideal gas

P¥ =nRT and U=%nRT

(3),-3=-(%),

7
1st Law recapitulation
T =internal energy
au,, =dg,, +dw,, +dn,, (n=number of moles. =0 for closed system)
au,, =-dU,,, ienergy conserved |
dU is exact differential
U is a state function completely general
for onty P-V work and cloged system { dn=0)
dU=dg - B dv
« Constant volume process dU,= T,  AUy=q,
« Adiabatic process du=iw AU =w
9

enthalpy: q for process at constant Pressure

H=U+P;, vV  (definition of enthalpy, H)

since U is state function and P, V are
state variables, H is also a

STATE FUNCTION completely general

why a new state function you might ask??

AU, =y, : AU, =4q, heat at constant volume

but most reactions and many physical
processes are carried out at constant P

desire state function for qp, heat at constant pressure

10

enthaply: H, a state function for heat transfer at constant pressure

H=U+L)

dH = dU + Pdl” +1dP

dH = dg - Pd)” +aw,,,, + Pdl” +1dP
dH = dg +VdP +dw,,,,

and at P=constantand @, =0
dH ,=dyq,

AHp=¢p as advertised !!

AHp=¢p atconst]’now

other
AHp ~ 0 endothermic (heat gained by system)
AH , < 0 exothermic (heat lost by system)

1

4H ideal gas

AH, = q,= IH(T'Pn’T :n(i,AT (general, w =0, dn=0)

other
ideal gas

H=U+PV =U+unRT
dH =aU +uRAT  (general for ideal gas)
AH =nC,aT +nRaT (general for idel gas, even V not const)
aH = rr((““ +R)arT
aH =nC,ar  IDEAL GAS ANYTIME,
EVEN IF P NOT CONSTANT
AH=nC,AT ideal gas general (w_, =0, dn=0)

12
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manipulating thermodynamic functions: fun and games

for example:
HW#3

12. Derive the following for any closed system,
with only P-V work:

ol al’

ar )\ ar ),

13

H(T,P): some manipulations and relationships (closed system)

dH =iq+VdP closed system, v, =0

math handout #6

‘divide by dT, holding P’ constant’
()23
ar), \dr),  \ar),

() %)~
Ty \dT), =~ ©

divide by dP’, holding T constant’
(&)-(&) ()
ap ), \ar). " \ap),
(-3
oF r dP T
aii =22 ari| 2\ ap
ar ), P},

dH:n(_fpdT+(%) dP  oqns. 3.30-332 E&R (p. 56 1527 )
r

15

save for later when we have tools from 2" Law of Thermodynamics

need 2" Law

to evaluate this
in terms of PV, T

dU =nCydl +| % | ar
[

T

Tl or[E) _p E&R equ31o
or oT v

many of the results in E&R ch 3 use
this [yet] ‘unproven’ result;
we will derive later
class should use result in HW3 #13*

17

total differential for U(T,V,n) and H(T,P,n)

U(T\ 1 0y, 10y, 1y )

7o ‘T v
av=lZ| are[E| @+
ey v Lol Tn ]

H(T,P,n,n,,..ny)
<

dH:[%] dT+|'%:| apP+
C ‘Pn \ € ‘Tn

for now closed system all dn; =0

14

U(T,V): some manipulations and relationships (closed system)

AU =iq— PdV"  closed system, v, =0

*divide by dT, holding V constant’
20\ _(3q) _p(eV

ar), \dT), \ar),

U\ _(da\ _ ~

(), -(&), ==

‘divide by dV, holding T constant’

(5[5,

(3 -

av=[28) ar+[ 2] av
aT ), av )

wznc‘;dﬁ[z—g) 4V eqn.3.12-3.15 L&R (p 50 p6p )
T

16

some important relationships between C; and C,,

to get relationship between C, and C,,
one needs to have relationship
involving both H and U; soooo

H=U+Pl"
dH =dU + Pdl" +1dP

18
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continuing with relating Cp and C,,

H=U+PV
dH = qU + PaV +VdP
divide by dT, P constant

8H ar ar . OP
— | == +P| = | +V| =
ar J, \aT ), aT ), \ar),
— aU’ ar
sy[20) ()
ar),” \ar),
to get |(—l'
nowtoget | —
L OT Jp

AU =uC,aT + a_l_ av
EpA

[Bl'j = {SI'J [SI'J
— | =t | | ==
or /, v ). \aT /.,

19

let's finish Cp vs C,, (very general relationship) ~E&R 3.37
_ 7 1V
s (), )
aT J; aT J,p
— - 7 L L
#Cp=nCy+ [ij [a—] + P[a—]
ov ) \ar /Jp or J,
= = ar .
nC,=nCy,+ [_j +P ] volume change
- > per T change of 1°

energy to energy to

raise T 1° raise T 1°
energy
lost as

const P const V
vol changes)

potential
energy as

molecules

‘separate’
per unit
volume
change

P-V work
per unit
volume
change

20

C, vs C, for ideal gas

#Cp=nC, + (B—U] +P EB—VJ
ETIn or J,

for ideal aas
_— uRT

Energy, U is function of ONLY T, U(T)

(2) -2
or), P
au
&)
— — nR
n(F=n(y+[()+.P]T

uC,=nC, +nR

[ C.=C,+R for ideal gas ]

21

experimental C, and C;, for selected gasses

Wature of c, c R=8.31 J mol"' K
2
e | ) ideal gas
12.5 208 8.30 1.66 c,-C

in section derive equation following equation

nl7‘V=n(_'P+ % - @
aP ); or ),

start with
dU =dH — Pdl"—V'dP
divide by 4T with V constant

and then boogie along as we just did!!

23

Monatomic ~ He (s " =R
5 ] = 3
Monatomic ~ Ne 12.7 208 8.12 1.64 monatomic (,,V :?R
Monatomic ~ Ar 12.5 20.8 8.30 1.67 :
Diatomic  H, 204 288 845 141 diatontic Cy = 7 R
Diatomic O, 21.0 293 8.32 1.40 Jmor™ K7
Diatomic N, 20.8 29.1 8.32 1.40 ER =1247
e 5
Triatomic  H,0 27.0 35.4 8.35 1.31 e
—R=2078
Polystomic ~ CH, 271 354 836 131 2
z R=2010
2
Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2
22
First Law: ideal gas calculations
relationships that apply to ideal gasses for all conditions with w;. =0
and constant composition (some also apply more generally):
AU=g+w Woy =—1 B dV” PV =nRT
Gy =1\ CpdT G =11 CpdT -
: , =Cp +R
=nCyAT 1CpAT
H=U+PV AUy conditions = NG AT AH 4y comdstions = NCpAT
monatomic ideal gas = _3 &, = 2 R
9 C,=ZR L
24




