Chemistry 163B Winter 2014 notes for lecture 5

differential of product (product rule)

example of implication of total differentials

$$
\begin{aligned}
& \text { First Law } \\
& \left.d U_{s p}=d q_{9 p}+d w_{s p}+d n_{s p} \text { (} \mathrm{n}=\text { number of moles; } \mathrm{dn}=0 \text { for closed system }\right) \\
& \mathrm{U} \text { is state function } \Rightarrow d U_{y p} \text {, is exact differential } \\
& d n=0(\text { closed system }) \\
& d U(T, P) \stackrel{\text { math }}{=}\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P \stackrel{\text { frostaw }}{=} d q_{s p o}+d w_{s y s} \\
& \text { OR } \\
& d U(T, V) \stackrel{m a t h}{=}\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \stackrel{\text { frast law }}{=} d q_{p w}+d w_{s p}
\end{aligned}
$$

"divide through by ??"

two relationships for ideal gasses: a ($\mu \mathrm{sec}$) look ahead (will prove rigorously in next lecture, but gthis is the next lecture)

math handout \#6

$$
d U(T, P)=\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P
$$

"divide through by dV holding x (something else) constant "

$$
\left(\frac{\partial U}{\partial V}\right)_{X}=\left(\frac{\partial U}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{X}+\left(\frac{\partial U}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial V}\right)_{X}
$$

later special simplification if $\mathrm{x}=\mathrm{P}$ or T

- for any substance
$d U_{v}=d q_{v}=n \bar{C}_{v} d T$ and $\Delta \mathrm{U}_{v}=\left\{n \bar{C}_{v} d T\right.$ for a constant volume process
- but for an ideal gas
$d U=n \bar{c}_{r} d T$ and $\Delta U=n \bar{c}_{V} \Delta T$ for ANY path (not only constant V process)
[other parts of path, changes of P and V with constant T, give zero contribution to ΔU]

Chemistry 163B Winter 2014 notes for lecture 5


```
\(C_{P}=C_{V}+n R\) for ideal gas
    for only P-V work and closed system \(\left(d w_{\text {ather }}=0, \quad(\mathrm{dn}=0)\right.\)
    \(d U=d q-P_{e s} d V\)
    \(d U_{V}=d q_{V}=\mathrm{n} \overline{\mathrm{C}_{V}} \mathrm{dT} \quad d U_{p}=d q_{p}-P d V_{P}\)
    \(\left(\frac{d q}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=n \bar{C}_{V} \quad l \begin{aligned} & d q_{p}=d U_{p}+P d V_{P} \\ & \left(\frac{\partial q}{d T}\right)_{p}=n \bar{C}_{P}=\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}\end{aligned}\)
            for monatomic ideal gas
        \(P V=n R T\) and \(U=\frac{3}{2} n R T\)
        \(\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{3}{2} n R=\left(\frac{\partial U}{\partial T}\right)_{P}\)
        \(n \bar{C}_{P}=\frac{3}{2} n R+P\left(\frac{n R}{P}\right)=\frac{5}{2} n R\)
```


enthalpy: q for process at constant Pressure

$\mathrm{H} \equiv \mathrm{U}+\mathrm{P}_{\text {int }} \mathrm{V} \quad$ (definition of enthalpy, H)
since U is state function and P, V are state variables, H is also a

STATE FUNCTION
completely general
why a new state function you might ask??
$d U_{V}=\pi q_{V} \quad ; \quad \Delta U_{V}=q_{V} \quad$ heat at constant volume
but most reactions and many physical
processes are carried out at constant P
desire state function for $\mathbf{q}_{\mathbf{p}}$, heat at constant pressure

$$
\begin{aligned}
& \text { enthaply: } H, \text { a state function for heat transfer at constant pressure } \\
& H \equiv U+P_{\text {wt }} V \\
& d H=d U+P d V+V d P \\
& d H=\pi q-P d V+\pi w_{\text {other }}+P d V+V d P \\
& d H=\pi q+V d P+\bar{d} w_{\text {other }} \\
& \text { and at } \mathrm{P}=\text { constant and } \quad \vec{\omega} w_{\text {other }}=0 \\
& d H_{P}=\bar{d} q_{P} \\
& \Delta H_{P}=q_{P} \quad \text { as advertised !! } \\
& \Delta H_{P}=q_{P} \text { at const P no w } \\
& \Delta H_{P}>0 \text { endothermic (heat gained by system) } \\
& \Delta H_{P}<0 \text { exothermic (heat lost by system) }
\end{aligned}
$$

```
\DeltaH ideal gas
\DeltaH
ideal gas
H\equivU+PV=U +nRT
aH=aU+nRaT (general for ideal gas)
AH=n\mp@subsup{\overline{C}}{v}{}|T+nRaT (general for idel gas, even V not const)
|H=|(\mp@subsup{\overline{C}}{v}{}+R)}\boldsymbol{A}
|H=|\mp@subsup{\overline{C}}{p}{}}\boldsymbol{a}T\mathbf{T}\mathrm{ IDEAL GAS ANYTIME,
    EVEN IF P NOT CONSTANT
\DeltaH=|}\mp@subsup{\overline{C}}{p}{}\DeltaT\quad\mathrm{ ideal gas general ( }\mp@subsup{\textrm{w}}{\mathrm{ other }}{}=0,\textrm{dn}=0
\(\Delta H\) ideal gas
```

```
\[
\begin{aligned}
& \left.\Delta H_{P}=I_{p}=\int n \bar{C}_{P} d T \approx \boldsymbol{n} \bar{C}_{P} \Delta T \quad \text { (general, } \mathrm{w}_{\text {other }}=0, \mathrm{dn}=0\right) \\
& \text { ideal gas } \\
& H \equiv U+P V=U+n R T \\
& a H=a U+n R a T \quad \text { (general for ideal gas) } \\
& \boldsymbol{H} H=\boldsymbol{n}\left(\bar{C}_{p}+R\right) \boldsymbol{d T} \\
& \boldsymbol{a H}=\boldsymbol{n} \bar{C}_{p} \boldsymbol{a t} \quad \text { IDEAL GAS ANYTIME, } \\
& \text { EVEN IF P NOT CONSTANT } \\
& \Delta \mathrm{H}=n \bar{C}_{p} \Delta T \quad \text { ideal gas general }\left(\mathrm{w}_{\text {other }}=0, \mathrm{dn}=0\right)
\end{aligned}
\]
```


Chemistry 163B Winter 2014
 notes for lecture 5

manipulating thermodynamic functions: fun and games

for example:
HW\#3
12. Derive the following for any closed system, with only P-V work:

$$
C_{V}=-\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{U}
$$

total differential for $U(T, V, n)$ and $H(T, P, n)$

$U\left(T, V, \boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{N}\right)$
$d U=\left(\frac{\partial U}{\partial T}\right)_{V, n} d T+\left(\frac{\partial U}{\partial V}\right)_{T, n} d V+\sum_{i=1}^{N}\left(\frac{\partial U}{\partial \pi_{i}}\right)_{T, V, n_{j} \neq n_{i}} d n_{i}$
$H\left(T, P, \boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{N}\right)$
$d H=\left(\frac{\partial H}{\partial T}\right)_{P, n} d T+\left(\frac{\partial H}{\partial P}\right)_{T, n} d P+\sum_{\left.\left.i=\frac{\partial H}{N}\right)_{T n_{i}}\right)_{T, P, n_{j} \neq n_{i}} d n_{i}}$
for now closed system all $\mathrm{dn}_{\mathrm{i}}=0$

$H(T, P)$: some manipulations and relationships (closed system)

$\boldsymbol{d} H=\boldsymbol{\pi} \boldsymbol{I}+V \boldsymbol{d} \boldsymbol{P}$ closed system, $\boldsymbol{\boldsymbol { d }} \boldsymbol{w}_{\text {other }}=0$
'divide by dT, holding P constant' math handout \#6
$\left(\frac{\partial H}{\partial T}\right)_{P}=\left(\frac{d q}{d T}\right)_{P}+V\left(\frac{\partial P}{\partial T}\right)_{P}$
$\left(\frac{\partial H}{\partial T}\right)_{P}=\left(\frac{d_{q}}{d T}\right)_{P}=n \bar{C}_{P}$
'divide by dP , holding T constant'
$\left(\frac{\partial H}{\partial P}\right)_{T}=\left(\frac{d_{q}}{d P}\right)_{T}+V\left(\frac{\partial P}{\partial P}\right)_{T}$
$\left(\frac{\partial H}{\partial P}\right)_{T}=\left(\frac{d}{d P}\right)_{T}+V$
$d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P$
$d H=n \bar{C}_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \quad$ eqns. 3.30-3.32 E\&R (p. $\left.56[52]_{\sim}\right)$

$U(T, V):$ some manipulations and relationships (closed system)

$d U=\pi \boldsymbol{\pi} \boldsymbol{q}-P d V \quad$ closed system, $\boldsymbol{\pi} v_{\text {other }}=0$
'divide by dT , holding V constant'
$\left(\frac{\partial U}{\partial T}\right)_{V}=\left(\frac{d q}{d T}\right)_{V}-P\left(\frac{\partial V}{\partial T}\right)_{V}$
$\left(\frac{\partial U}{\partial T}\right)_{V}=\left(\frac{\vec{d} q}{d T}\right)_{V}=n \bar{C}_{V}$
'divide by dV , holding T constant'
$\left(\frac{\partial U}{\partial V}\right)_{T}=\left(\frac{d_{g}}{d V}\right)_{T}-P\left(\frac{\partial V}{\partial V}\right)_{T}$
$\left(\frac{\partial U}{\partial V}\right)_{T}=\left(\frac{d g}{d V}\right)_{T}-P$
$d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$
$d U=n \bar{C}_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \quad$ eqn. 3.12-3.15 E\&R (p $\left.50[46]_{\Perp}\right)$
16
some important relationships between C_{P} and C_{V}
$\frac{1}{\boldsymbol{n}}\left(\frac{\partial H}{\partial T}\right)_{P}=\bar{C}_{P} \quad$ and $\quad \frac{1}{\boldsymbol{n}}\left(\frac{\partial U}{\partial T}\right)_{V}=\bar{C}_{V}$
to get relationship between C_{P} and C_{V} one needs to have relationship involving both H and U ; soooo

$$
\begin{aligned}
& H=U+P V \\
& d H=d U+P d V+V d P
\end{aligned}
$$

Chemistry 163B Winter 2014 notes for lecture 5

$$
\begin{aligned}
& C_{P} \text { vs } C_{V} \text { for ideal gas } \\
& \qquad \begin{array}{r}
n \bar{C}_{P}=n \bar{C}_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P} \\
\text { for ideal qas } \\
V=\frac{n R T}{P}
\end{array}
\end{aligned}
$$

Energy, U is function of ONLY T, $\mathrm{U}(\mathrm{T})$

$$
\begin{aligned}
& \left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P} \\
& \left(\frac{\partial U}{\partial V}\right)_{T}=\mathbf{0}
\end{aligned}
$$

$$
n \bar{C}_{P}=n \bar{C}_{V}+[0+P] \frac{n R}{P}
$$

$$
n \bar{C}_{p}=n \bar{C}_{V}+n R
$$

$$
\bar{C}_{P}=\bar{C}_{V}+R \text { for ideal gas }
$$

in section derive equation following equation

$\boldsymbol{n} \overline{\boldsymbol{C}}_{V}=\boldsymbol{n} \overline{\boldsymbol{C}}_{P}+\left[\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}-\boldsymbol{V}\right]\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}$
start with
$d U=d H-P d V-V d P$
divide by $d T$ with V constant and then boogie along as we just did!

relationships that apply to ideal gasses for all conditions with $\mathrm{w}_{\text {other }}=0$ and constant composition (some also apply more generally):		
$\Delta U=q+w$	$w_{P V}=-i P_{e x t} d V$	$P V=n R T$
$\begin{aligned} q_{V}= & n \dot{!} \bar{C}_{V} d T \\ & ? \\ & =n \bar{C}_{V} \Delta T \end{aligned}$	$\begin{aligned} q_{P}= & n \dot{\Gamma} \bar{C}_{P} d T \\ & ? ? \bar{C}_{P} \Delta T \end{aligned}$	$\bar{C}_{P}=\bar{C}_{V}+R$
$H \equiv U+P V$	$\Delta U_{\text {any conditions }}=n \bar{C}_{V}$	$\Delta H_{\text {ary conditions }}=n \bar{C}_{P} \Delta T$
monatomic ideal gas	$\bar{C}_{V}=\frac{3}{2} R$	$\bar{C}_{P}=\frac{5}{2} R$

$$
\begin{aligned}
& \text { continuing with relating } C_{P} \text { and } C_{V} \\
& H=U+P V \\
& \boldsymbol{d H}=\boldsymbol{d} U+P d V+V d P \\
& \text { divide by } d T, P \text { constant } \\
& \left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}+\boldsymbol{V}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{P} \\
& \boldsymbol{n} \overline{\boldsymbol{C}}_{P}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P} \\
& \text { now to get }\left(\frac{\partial U}{\partial T}\right)_{P} \\
& \boldsymbol{d} \boldsymbol{U}=n \bar{C}_{V} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{U}}{\partial V}\right)_{T} \boldsymbol{d} \boldsymbol{V} \\
& \left(\frac{\partial U}{\partial T}\right)_{P}=\boldsymbol{n} \bar{C}_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

