Chemistry 163B Winter 2014 notes for lecture 5


```
differential of product (product rule)
```

example of implication of total differentials
First Law
$d U_{5 y 5}=d q_{5 y 5}+d w_{s y s}+d n_{5 y 5}$ ($\mathrm{n}=$ number of moles; $\mathrm{dn}=0$ for closed system)
U is state function $\Rightarrow d U_{\text {sys }}$ is exact differential

$d n=0($ closed system $)$

$$
d U(T, P) \stackrel{\text { math }}{=}\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P \stackrel{\text { firstlaw }}{=} d q_{\text {sys }}+đ w_{\text {sys }}
$$

OR

"divide through by ??"

math handout \#6

$$
d U(T, P)=\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P
$$

two relationships for ideal gasses: a ($\mu \mathrm{sec}$) look ahead
(will prove rigorously in next lecture, but gthis is the next lecture)

- for any substance
$d U_{v}=\boldsymbol{d} q_{v}=n \bar{C}_{v} d T$ and $\Delta \mathrm{U}_{v}=\int n \bar{C}_{v} d T$ for a constant volume process
- but for an ideal gas
$d U=n \bar{C}_{v} d T$ and $\Delta U=n \bar{C}_{v} \Delta T$ for ANY path (not only constant V process)
(lother parts of path, changes of P and V with constant T, give zero contribution to

$$
\left(\frac{\partial U}{\partial V}\right)_{X}=\left(\frac{\partial U}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{X}+\left(\frac{\partial U}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial V}\right)_{X}
$$

later special simplification if $\mathrm{x}=\mathrm{P}$ or T

Chemistry 163B Winter 2014 notes for lecture 5

ideal gas $\quad \Delta U=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process)
$d U_{v}=d q_{v}=n \bar{C}_{v} d T$ and $\Delta \mathrm{U}_{v}=\int n \bar{C}_{v} d T$ for a constant volume process $d U=n \bar{C}_{v} d T$ and $\Delta U=n \bar{C}_{v} \Delta T$ for ANY path (not only constant V process)

$\Delta \mathrm{U}$ along general path where both T (const V) and V (const T) vary $\Delta U=n C_{v} \Delta T$
$C_{P}=C_{V}+n R$ for ideal gas
for only P-V work and closed system $\left(\begin{array}{c} \\ \text { other }\end{array}=0, \mathrm{dn}=0\right)$
$d U=d q-P_{e x t} d V$
$d U_{V}=d q_{V}=\mathrm{n} \overline{\mathrm{C}_{V}} \mathrm{dT} \quad d U_{p}=d q_{p}-P d V_{P}$
$\left(\frac{\Delta q}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=n \bar{C}_{V} \quad \begin{aligned} & d q_{p}=d U_{p}+P d V_{P} \\ & \left(\frac{\Delta q}{d T}\right)_{P}=n \bar{C}_{P}=\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}\end{aligned}$

$$
\begin{gathered}
\text { for monatomic ideal gas } \\
P V=n R T \text { and } U=\frac{3}{2} n R T \\
\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{3}{2} n R=\left(\frac{\partial U}{\partial T}\right)_{P} \\
n \bar{C}_{P}=\frac{3}{2} n R+P\left(\frac{n R}{P}\right)=\frac{5}{2} n R
\end{gathered}
$$

$1^{\text {st }}$ Law recapitulation
$\mathrm{U} \equiv$ internal energy
$d U_{s y s}=đ q_{s y s}+đ w_{s y s}+d n_{s y s}$ ($\mathrm{n}=$ number of moles; $\mathrm{dn}=0$ for closed system)
$d U_{\text {sys }}=-d U_{\text {surr }} \quad($ energy conserved $)$
$d U$ is exact differential
U is a state function completely general
for only P-V work and closed system ($\mathrm{dn}=0$)

$$
d U=đ q-P_{e x t} d V
$$

- Constant volume process $\mathrm{dU}_{\mathrm{v}}=đ q_{V} \quad \Delta \mathrm{U}_{\mathrm{v}}=q_{V}$
- Adiabatic process $\quad d \mathbf{d U}=\pi w \quad \Delta \mathbf{U}=w$

enthalpy: q for process at constant Pressure

$\mathrm{H} \equiv \mathrm{U}+\mathrm{P}_{\text {int }} \mathrm{V} \quad$ (definition of enthalpy, H)
since U is state function and P, V are state variables, H is also a

STATE FUNCTION
completely general
why a new state function you might ask??
$d U_{V}=\overleftarrow{\pi} q_{V} \quad ; \quad \Delta U_{V}=q_{V} \quad$ heat at constant volume
but most reactions and many physical
processes are carried out at constant P
desire state function for $\mathbf{q}_{\mathbf{p}}$, heat at constant pressure

$$
\begin{aligned}
& \text { enthaply: H, a state function for heat transfer at constant pressure } \\
& \boldsymbol{H} \equiv \boldsymbol{U}+\boldsymbol{P}_{\mathrm{int}} \boldsymbol{V} \\
& d H=d U+P d V+V d P \\
& d H=đ q-P d V+đ w_{\text {other }}+P d V+V d P \\
& \boldsymbol{d} \boldsymbol{H}=\boldsymbol{\pi q}+\mathbf{V} \boldsymbol{d P}+\boldsymbol{\pi} \boldsymbol{w}_{\text {other }} \\
& \text { and at } \mathrm{P}=\text { constant and } \boldsymbol{d} w_{\text {other }}=0 \\
& \boldsymbol{d} H_{P}=\boldsymbol{đ} \boldsymbol{q}_{P} \\
& \Delta \boldsymbol{H}_{P}=\boldsymbol{q}_{\boldsymbol{P}} \quad \text { as advertised !! } \\
& \Delta \boldsymbol{H}_{P}=\boldsymbol{q}_{\mathrm{P}} \text { at const } \mathrm{P} \text { no } \mathrm{w}_{\text {other }} \\
& \Delta H_{P}>0 \text { endothermic (heat gained by system) } \\
& \Delta H_{P}<0 \text { exothermic (heat lost by system) }
\end{aligned}
$$

```
\DeltaH ideal gas
    \DeltaH
    ideal gas
    H\equivU+PV=U + nRT
    dH=dU + nRdT (general for ideal gas)
    dH=n
    dH=n(\mp@subsup{\overline{C}}{v}{}+R)dT
dH}=n\mp@subsup{\overline{C}}{P}{}dT\quad\mathrm{ IDEAL GAS ANYTIME,
        EVEN IF P NOT CONSTANT
    \DeltaH=n焐
```


Chemistry 163B Winter 2014
 notes for lecture 5

manipulating thermodynamic functions: fun and games

for example:
HW\#3
12. Derive the following for any closed system, with only P-V work:

$$
C_{V}=-\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{U}
$$

$U\left(T, V, n_{1}, n_{2}, \ldots, n_{N}\right)$
$\boldsymbol{d} \boldsymbol{U}=\left(\frac{\partial U}{\partial T}\right)_{V, n} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial U}{\partial V}\right)_{T, n} \boldsymbol{d V}+\sum_{i=1}^{N}\left(\frac{\partial U}{\partial n_{i}}\right)_{T, V, n_{j} \neq n_{i}}^{d n_{i}}$

$$
\begin{aligned}
& H\left(T, P, n_{1}, n_{2}, \ldots, n_{N}\right) \\
& \boldsymbol{d H}=\left(\frac{\partial H}{\partial T}\right)_{P, n} d T+\left(\frac{\partial H}{\partial P}\right)_{T, n} d P+\sum_{i=(}^{N}\left(\frac{\partial H}{\partial n_{i}}\right)_{T, P, n_{j} \neq n_{i}} d n_{i}
\end{aligned}
$$

for now closed system all $\mathrm{dn}_{\mathrm{i}}=0$

$H(T, P)$: some manipulations and relationships (closed system)

$\boldsymbol{d} \boldsymbol{H}=\boldsymbol{\pi} \boldsymbol{q}+\boldsymbol{V} \boldsymbol{d P}$ closed system, $\boldsymbol{\|} \boldsymbol{w}_{\text {other }}=0$
'divide by dT, holding P constant' math handout \#6
$\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P}=\left(\frac{d \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}\right)_{\mathrm{P}}+\boldsymbol{V}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{\mathrm{P}}$
$\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{p}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{d \boldsymbol{d}}\right)_{p}=\boldsymbol{n}{\overline{C_{P}}}_{P}$
'divide by dP , holding T constant'
$\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{d \boldsymbol{P}}\right)_{T}+\boldsymbol{V}\left(\frac{\partial \mathbf{P}}{\partial \boldsymbol{P}}\right)_{T}$
$\left.\left(\frac{\partial \boldsymbol{H}}{\partial \mathbf{P}}\right)_{T}\right)=\left(\frac{\boldsymbol{\tau} \boldsymbol{q}}{d \boldsymbol{P}}\right)_{T}+\boldsymbol{V}$
$\boldsymbol{d H}=\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T} \boldsymbol{d} \boldsymbol{P}$
$d H=n \bar{C}_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \quad$ eqns. $3.30-3.32 \mathrm{E} \& \mathrm{R}\left(\mathrm{p} .56[52]_{2 \mathrm{LC}}\right)$

$U(T, V)$: some manipulations and relationships (closed system)

$\boldsymbol{d} \boldsymbol{U}=\boldsymbol{\pi} \boldsymbol{q}-\boldsymbol{P} \boldsymbol{d} \boldsymbol{V}$ closed system, $\boldsymbol{\Pi} \boldsymbol{w}_{\text {other }}=0$
'divide by dT , holding V constant'
$\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}\right)_{V}-\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{V}$
$\left(\frac{\partial U}{\partial T}\right)_{V}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d T}}\right)_{V}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}$
'divide by dV , holding T constant'
$\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{V}}\right)_{T}-\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{V}}\right)_{T}$
$\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{V}}\right)_{T}-\boldsymbol{P}$
$\boldsymbol{d} \boldsymbol{U}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T} \boldsymbol{d} \boldsymbol{V}$
$d U=n \bar{C}_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \quad$ eqn. 3.12-3.15 $\mathrm{E} \& \mathrm{R}\left(\mathrm{p} 50[46]_{\text {zen }}\right)$
16

$$
\frac{1}{n}\left(\frac{\partial H}{\partial T}\right)_{P}=\bar{C}_{P} \quad \text { and } \quad \frac{1}{n}\left(\frac{\partial U}{\partial T}\right)_{V}=\bar{C}_{V}
$$

to get relationship between C_{p} and C_{V} one needs to have relationship involving both H and U ; soooo

$$
\begin{aligned}
& H=U+P V \\
& d H=d U+P d V+V d P
\end{aligned}
$$

many of the results in E\&R ch 3 use
this [yet] 'unproven' result; we will derive later class should use result in HW3 \#13*

Chemistry 163B Winter 2014 notes for lecture 5

C_{P} vs C_{v} for ideal gas

$$
\begin{gathered}
\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}+\left[\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}+\boldsymbol{P}\right]\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \\
\text { for ideal gas } \\
\boldsymbol{V}=\frac{\boldsymbol{n} \boldsymbol{R} \boldsymbol{T}}{\boldsymbol{P}}
\end{gathered}
$$

Energy, U is function of ONLY T, $\mathrm{U}(\mathrm{T})$

$$
\begin{aligned}
& \left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}=\frac{\boldsymbol{n} \boldsymbol{R}}{\boldsymbol{P}} \\
& \left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=\boldsymbol{0}
\end{aligned}
$$

$$
n \bar{C}_{P}=\boldsymbol{n} \bar{C}_{V}+[0+\boldsymbol{P}] \frac{\boldsymbol{n} \boldsymbol{R}}{\boldsymbol{P}}
$$

$$
\begin{aligned}
& n \bar{C}_{P}=n \bar{C}_{V}+n \boldsymbol{R} \\
& \hline \bar{C}_{P}=\bar{C}_{V}+R \quad \text { for ideal gas }
\end{aligned}
$$

in section derive equation following equation
$\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{P}+\left[\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}-\boldsymbol{V}\right]\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}$
start with
$d U=d H-P d V-V d P$
divide by $d T$ with V constant and then boogie along as we just did!!

relationships that apply to ideal gasses for all conditions with $\mathrm{w}_{\text {other }}=0$ and constant composition (some also apply more generally):		
$\Delta U=q+w$	$w_{P V}=-\int P_{e x t} d V$	$P V=n R T$
$\begin{aligned} q_{V} & =n \int \bar{C}_{V} d T \\ & ? \\ & =n \bar{C}_{V} \Delta T \end{aligned}$	$\begin{aligned} q_{P} & =n \int \bar{C}_{P} d T \\ & ? \\ & =n \bar{C}_{p} \Delta T \end{aligned}$	$\bar{C}_{p}=\bar{C}_{V}+R$
$H \equiv U+P V$	$\Delta U_{\text {any conditions }}=n \bar{C}_{V} \Delta T$	$\Delta H_{\text {any conditions }}=n \bar{C}_{P} \Delta T$
monatomic ideal gas	$\bar{C}_{V}=\frac{3}{2} R$	$\bar{C}_{P}=\frac{5}{2} R$

$$
\begin{aligned}
& \text { continuing with relating } C_{P} \text { and } C_{V} \\
& \boldsymbol{H}=\boldsymbol{U}+\boldsymbol{P} \boldsymbol{V} \\
& d H=d U+P d V+V d P \\
& \text { divide by } d T, \mathrm{P} \text { constant } \\
& \left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}+\boldsymbol{V}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \\
& \boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \\
& \text { now to get }\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P} \\
& \boldsymbol{d} \boldsymbol{U}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V} \\
& \left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}
\end{aligned}
$$

