Review Topics Weeks 1-3

In reviewing material one should not memorize the entries as 'plug-in' formulas. But should understand i) how they arise from the basic laws of thermodynamics; ii) what are the limits on their generality and under what special conditions they apply; and iii) how they qualitatively reflect the 'logic' of the natural world and, in some cases, the underlying properties of molecules and matter.

- Mathematical techniques (to be employed throughout course as needed)
- Exact and inexact differentials
- State functions
- Equations of state
- Thermodynamic variables (P, V, T, variables for wother) and ideal gas thermometer to operationally measure T
- $P=F / A$
- System and surroundings
- Ideal Gas
- $P V=n R T$
- $E=(3 / 2)$ nRT (monatomic; no "internal" structure, translational kinetic energy in 3 dimensions)
- Approximation for real gasses
- Van der Waals $\left(P-\frac{a}{\overline{\mathrm{~V}}^{2}}\right)(\overline{\mathrm{V}}-\mathrm{nb})=\mathrm{RT}$; physical meaning of a and b
- Other approximate equations of state exist (e.g. Virial power series expansion)
- Work
- w= force • displacement
- $\bar{d} w$ inexact differential, depends on path
- $\pi \mathrm{w}=-\mathrm{Pext} d \mathrm{~V}$ (P-V work)
- $w=\int \pi w$
- $\mathrm{w}=-\mathrm{Pext}_{\mathrm{ext}} \Delta \mathrm{V} \quad\left(\mathrm{Pext}^{2}=\right.$ constant, wother $\left.=0\right)$
- $w=-n R T \ln \left(V_{f} / V_{i}\right) \quad$ (isothermal, reversible, ideal gas, wother $=0$)
- Heat
- \quad q q inexact differential depends on path
- $\bar{d} \mathrm{q}=\mathrm{C} d T$
- $\mathrm{q}=\int \mathrm{C} d T$
- First Law of Thermodynamics
- U = internal energy
- $\quad d \mathrm{U}=\pi \mathrm{q}+\pi \mathrm{w} \quad$ (definition, for closed system)
- Equivalent statements of First Law of Thermodynamics
- U is a state function
- $d \mathrm{U}$ is an exact differential
- $\Delta \mathrm{U}_{\text {sys }}=-\Delta \mathrm{U}_{\text {surr }}$
- $\mathrm{H} \equiv \mathrm{U}+(\mathrm{PV})_{\text {internal }}$
- H is a state function
- $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})=\Delta \mathrm{U}+\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}-\mathrm{Pi}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
- Differential relationships for state functions ($\mathrm{n}_{\mathrm{i}}=$ number moles of substance i ; ov1 .. оvm are "other variables" that might define the energy of the system and be involved in wother. For example charge, position with respect gravitational attraction, etc)
- $d U\left(T, V, n_{1}, \ldots, n_{K}, o V_{1}, \ldots, o V_{M}\right)=\left(\frac{\partial U}{\partial T}\right)_{V, n, o v} d T+\left(\frac{\partial U}{\partial V}\right)_{T, n, 0 V} d V+\sum_{i}^{K}\left(\frac{\partial U}{\partial n_{i}}\right)_{T, V, n_{j i f}, o v} d n_{i}+\sum_{i}^{M}\left(\frac{\partial U}{\partial \mathrm{ov}_{i}}\right)_{T, V, n, 0 V_{j i f}} d o V_{i}$
- $d H\left(T, P, n_{1}, \ldots, n_{K}, o v_{1}, \ldots, o v_{M}\right)=\left(\frac{\partial H}{\partial T}\right)_{P, n, o v} d T+\left(\frac{\partial H}{\partial P}\right)_{T, n, 0 v} d P+\sum_{i}^{K}\left(\frac{\partial H}{\partial n_{i}}\right)_{T, P, n_{j+1}, o v} d n_{i}+\sum_{i}^{M}\left(\frac{\partial H}{\partial o v_{i}}\right)_{T, P, n, 0 v_{T+1}} \operatorname{dov}_{i}$
more commonly (for closed system, $\mathrm{dn}_{\mathrm{i}}=0$; and no work other, $d \mathrm{w}_{\text {other }}=0$)
- $\quad \mathrm{dU}(\mathrm{T}, \mathrm{V})=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{T}}\right)_{\mathrm{V}} \mathrm{dT}+\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{T}} \mathrm{dV}$
- $d H(T, P)=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P$
- Definitions relationships (closed system)
- $d \mathrm{U}=\pi \mathrm{q}-\mathrm{P}_{\text {ext }} \mathrm{d} \mathrm{V}+\pi \mathrm{w}_{\text {other }}$
- $\Delta \mathrm{Uv}=\mathrm{q}_{\mathrm{v}}+\overparen{d} \mathrm{w}_{\text {other }}$ (const V) "heat is $\Delta \mathrm{U}$ at constant V "
- $\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \equiv\left(\frac{\mathrm{dq}}{\mathrm{dT}}\right)_{\mathrm{V}} \Rightarrow d \mathrm{U} \mathrm{V}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} d \mathrm{~T}+\bar{d}$ wother (const V)
- $\mathrm{dH}=d \mathrm{q}+\mathrm{V} d \mathrm{P}+\pi \mathrm{w}_{\text {other }}\left(\mathrm{P}_{\text {ext }}=\right.$ Pinternal ; thus usually for a reversible process; but OK for any infinitesimal process)
- $\Delta H \mathrm{H}=\mathrm{qp}+\mathrm{w}_{\text {other }} \quad\left(\right.$ const $\left.\mathrm{P}_{\text {ext }} ; \mathrm{P}_{\text {intial }}=\mathrm{P}_{\text {final }}=\mathrm{P}_{\text {ext }}\right)$ "heat is ΔH at constant P "
- $\mathrm{n}_{\mathrm{P}} \equiv\left(\frac{\mathrm{dq}}{\mathrm{dT}}\right)_{\mathrm{P}} \Rightarrow d \mathrm{H}_{\mathrm{P}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} d \mathrm{~T}+む \mathrm{w}_{\text {other }} \quad$ (const P)
- Derived consequences (closed system, $đ$ wother $=0$)

$$
\begin{aligned}
\mathrm{dU} & =\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \mathrm{dT}+\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} \mathrm{dV} \\
& \quad \text { with }\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\left(\frac{\mathrm{dq}}{\mathrm{dV}}\right)_{\mathrm{T}}-\mathrm{P}
\end{aligned}
$$

- $d \mathrm{U}_{\mathrm{V}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} d \mathrm{~T} \quad$ (const V , any system) but with $\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=0$ for ideal gas
- $d \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{v}} d \mathrm{~T} \quad$ (ideal gas, any path)

$$
\mathrm{dH}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \mathrm{dT}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}} \mathrm{dP}
$$

$$
\operatorname{with}\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}=\left(\frac{\mathrm{dq}}{\mathrm{dP}}\right)_{\mathrm{T}}+\mathrm{V}
$$

- $d \mathrm{HP}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} d \mathrm{~T} \quad$ (const P , any system)
since for ideal gas $d \mathrm{H}=d \mathbf{U}+d(\mathrm{PV})=d \mathbf{U}+d(\mathrm{nRT})=d \mathbf{U}+\mathrm{nR} d \mathbf{T}$ and $d \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} d \mathrm{~T}$
- $d \mathrm{HP}_{\mathrm{P}}=\mathrm{n}\left(\overline{\mathrm{C}}_{\mathrm{V}}+\mathrm{R}\right) d \mathrm{~T}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \mathrm{dT}$ (ideal gas, any path) with $\overline{\mathrm{C}}_{\mathrm{P}}=\overline{\mathrm{C}}_{\mathrm{V}}+\mathrm{R}$ for ideal gas
- Evaluating q, w, $\Delta \mathbf{U}, \Delta \mathrm{H}$ for various processes (closed system, no Wother)

Constant volume

- $w=0$
- $\mathrm{q}_{\mathrm{v}}=\Delta \mathrm{U}_{\mathrm{v}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{v}} \Delta \mathrm{T}$
- $\Delta \mathrm{H}_{\mathrm{v}}=\Delta \mathrm{U}_{\mathrm{V}}+\mathrm{V} \Delta \mathrm{P}=\Delta \mathrm{U}_{\mathrm{V}}+\mathrm{V}\left(\mathrm{Pf}-\mathrm{P}_{\mathrm{i}}\right)$

Constant pressure

- $\mathrm{qp}_{\mathrm{p}}=\Delta \mathrm{HP}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \Delta \mathrm{T}$
- $w=-P \Delta V$
- $\Delta U p=q+w$

Ideal gasses

- $\overline{\mathrm{C}}_{\mathrm{P}}=\overline{\mathrm{C}}_{\mathrm{V}}+\mathrm{R}$
- $\overline{\mathrm{C}}_{\mathrm{V}}=\frac{3}{2} \mathbf{R}$ for monatomic ideal gas
- $\Delta \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{v}} \Delta \mathrm{T}$ (any path)
- $\Delta \mathrm{H}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \Delta \mathrm{T}$ (any path)

Isothermal path

- $q=-w$
- $\Delta \mathrm{U}=0$
- $\Delta \mathrm{H}=0$
- $w=-n R T \ln \frac{V_{f}}{V_{i}}=\square n R T \ln \frac{P_{i}}{P_{f}}$ (reversible path, note - sign)
- $\mathrm{w}=-\mathrm{P}_{\text {ext }} \Delta \mathrm{V}$ (constant $\mathrm{P}_{\text {ext }}$ expansion/compression)

Adiabatic path

- $\mathrm{q}=0$
- $\Delta U=w=n \bar{C}_{V} \Delta T$
- $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})=\Delta \mathrm{U}+\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}-\mathrm{Pi}_{\mathrm{i}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \Delta \mathrm{T}$
- $T_{1}^{\frac{\bar{c}_{V}}{R}} V_{1}=T_{2}^{\frac{\bar{c}_{V}}{R}} V_{2}$ (adiabatic reversible path)
- $\mathrm{P}_{1} \mathrm{~V}_{1}^{\frac{\overline{\mathrm{C}}_{\mathrm{p}}}{\overline{\mathrm{C}}_{\mathrm{V}}}}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\frac{\overline{\mathrm{C}}_{\mathrm{p}}}{\overline{\mathrm{C}}_{\mathrm{V}}}}$ (adiabatic reversible path, $\mathrm{PV} \gamma=$ constant)
- $\frac{T_{1}^{\frac{\bar{C}_{P}}{R}}}{P_{1}}=\frac{T_{2}^{\frac{\bar{C}_{P}}{R}}}{P_{2}}$ (adiabatic reversible path)

- Thermochemistry

- $\Delta \mathrm{H}_{\text {reaction }}=\left(\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}\right)($ vs ΔH for physical change $)$
- $\Delta H p=q p$
- standard states
- definition of $\bar{H}_{f}^{o} \equiv \Delta \bar{H}_{f}^{o}$
- $\Delta H_{\text {reaction }}^{o}=\sum_{i} v_{i} \bar{H}_{f}^{o} \quad$ where v_{i} are stoichiometric coefficients
- Hess's Law
- $\Delta \mathrm{H}_{\text {reaction }}=\Delta \mathrm{U}_{\text {reaction }}+\Delta \mathrm{n}_{\text {gas }} \mathrm{RT}$
- $\Delta H\left(T_{2}\right)=\Delta H\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{P} d T$
- $\Delta \mathrm{H}$ from bond enthalpies
- Heats of reactions in ionic solution

