Chemistry 163B Lecture 09

Carnot Arithmetic

Challenged Penmanship

Notes

see handout: Carnot Arithmetic

1

- 1. Phenomenological statements (what is ALWAYS observed)
- 2. Ideal gas Carnot *[reversible]* cycle efficiency of heat \rightarrow work (Carnot cycle transfers heat only at T_U and T_L)
- Any cyclic engine operating between T_U and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
- 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
- 5. Show that for this REVERSIBLE cycle

 $q_U + q_L \neq 0$ (dq inexact differential $\oint dq \neq 0$) but

$$\frac{q_U}{T_U} + \frac{q_L}{T_L} = 0 \quad (something \text{ VERY VERY special about } \frac{\mathrm{d}q_{rev}}{T}; \quad \oint \frac{\mathrm{d}q_{rev}}{T} = !!!)$$

6. S, entropy and spontaneous changes

- Disorder, **W**, did not change during an adiabatic reversible expansion $(q_{rev} = 0)$
- Disorder, **W**, increased in isothermal reversible expansion $(q_{rev} > 0)$
- Disorder, W, increased with T increase (q>0)
- Disorder, **W**, decreased with T decrease (q<0)
- As $T \rightarrow 0$, $W \rightarrow 1$

statements of the Second Law of Thermodynamics (roadmap #1)

- Macroscopic properties of an <u>isolated system</u> eventually assume constant values (e.g. pressure in two bulbs of gas_becomes constant; two block of metal reach same T) [*Andrews.* p37]
- 2. It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change in the surroundings. *Kelvin's Statement [Raff p 157]; Carnot Cycle*
- 3. It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. *Clausius's Statement, refrigerator*
- 4. In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process
 - ~ Caratheodory's statement [Andrews p. 58]

goals of Carnot arithmetic (step 2 of roadmap)

- 1. Carnot cycle is "engine" that produces work from heat
- net work for cycle: w_{surr} >0 engine DOES work on surroundings
- Define efficiency: efficiency=(net work done by machine)/(heat energy input to machine)
- 3. Today, arithmetic manipulations of 1st Law results from ideal gas Carnot cycle (HW2 #10) to show that this efficiency depends only on the two temperatures at which heat is transferred to and from surroundings (the T_U of step 1 and T_L of step 3; the non-adiabatic paths)
- 4. Although for [reversible] Carnot cycle $\oint dq_{rev} \stackrel{\text{WILL}}{\neq} 0$ but $\oint \frac{dq_{rev}}{T} \stackrel{\text{WILL}}{\equiv} 0$

for system in complete cycle:

∆U=0; q >0; w <0 (work DONE on surr) (Prob #10e)

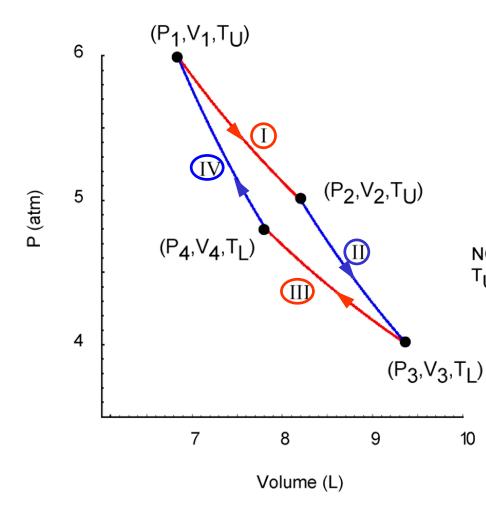
q > 0 (q_{in}) at higher T_H ; q < 0 (q_{out}) at lower T_L

efficiency= $-w/q_{1\rightarrow 2}$ (how much total [net] **work out** (-sign) for **heat in** $1\rightarrow 2$)

efficiency will depend on $T_{\rm U}$ and $T_{\rm L}$

HW4 prob #22
$$\varepsilon$$
 is ε fficiency
 $\varepsilon = \frac{T_H - T_C}{T_H}$ or $\varepsilon = \frac{T_U - T_L}{T_U}$
H=HOT C=COLD or U=UPPER L=LOWER

Problem HW2 #10 (see handout "Carnot Cycle Arithmetic)



in prob #10

$$P_1=6 \text{ atm}, T_1=T_U=500K$$

 $P_2=5 \text{ atm}, T_2=T_U=500K$
 $P_3=4 \text{ atm}, q_{2\rightarrow 3}=0, T_3=T_L$
 $P_4=4.8 \text{ atm}, T_4=T_L, q_{4\rightarrow 1}=0$

NOTE: $T_U (T upper) \equiv T_H (T higher or T hotter)$

cyclic process

I isothermal expansion II adiabatic expansion III isothermal compression IV adiabatic compression • get $w_I + w_{II} + w_{III} + w_{IV} = w_{total}$

• get $q_I = q_{input}$

Summary (see handout "Summary of Heat and Work for the Carnot Cycle Engines, Refrigerators, Heat Pumps")

general expressions for $(P_1, T_U) \xrightarrow{I} (P_2, T_U) \xrightarrow{II} (P_3, T_L) \xrightarrow{III} (P_4, T_L) \xrightarrow{IV} (P_1, T_U)$

ENGINE	q	W _{sys}	W _{surr}	
I. isothermal expansion	$+ nR T_v \ln \frac{P_1}{P_2}$ 1.3	$-nRT_U \ln \frac{P_1}{P_2} \qquad 1.2$	$+ nR T_{_U} \ln \frac{P_1}{P_2}$	heat in at T _H work out
II adiabatic expansion	0	$n\overline{C_{_V}}(T_{_L}-T_{_U})$ 2.4	$-n\overline{C_{_V}}(T_{_L}-T_{_U})$	work out
III. isothermal	$nRT_L \ln \frac{P_s}{R} =$	$-nRT_L \ln \frac{P_s}{R}$	$-nRT_L \ln \frac{P_1}{P_2}$	heat lost at T_L
compression	P_4 3.3&T.3 $-nR T_L \ln \frac{P_1}{P_2}$	$-nR T_{L} \ln \frac{P_{3}}{P_{4}}$ $= nR T_{L} \ln \frac{P_{1}}{P_{2}}$ 3.2&T.3	P ₂	work in
IV. adiabatic compression	0	$n\overline{C_v}(T_v - T_L)$ 4.4	$-n\overline{C_{_V}}(T_{_U}-T_{_L})$	work in
net gain/cost	$q_{in} = q_I$		w _{total} = w _l +w _{ll} +w _{lll} +w _{lV} =	ε=w _{surr} /q _{in}
	$+ nR T_v \ln \frac{P_1}{P_2}$		$nR(T_{_U} - T_{_L})\ln\frac{P_{_1}}{P_{_2}}$	$\epsilon = (T_U - T_L)/T_U$

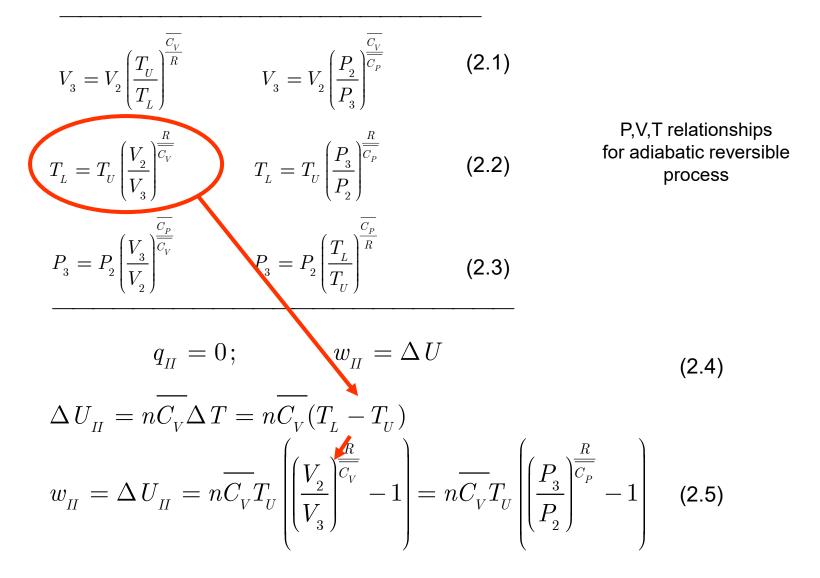
Step I Isothermal expansion, $T_U, V_1 \rightarrow V_{2^1}$

$$\Delta U_I = 0 \tag{1.1}$$

$$w_{I} = -nRT_{U}\ln\frac{V_{2}}{V_{1}} = nRT_{U}\ln\frac{P_{2}}{P_{1}}$$
(1.2)

$$q_{I} = -w_{I} = nRT_{U} \ln \frac{V_{2}}{V_{1}} = nRT_{U} \ln \frac{P_{1}}{P_{2}}$$
(1.3)

step II: adiabatic reversible compression $T_U \rightarrow T_L$

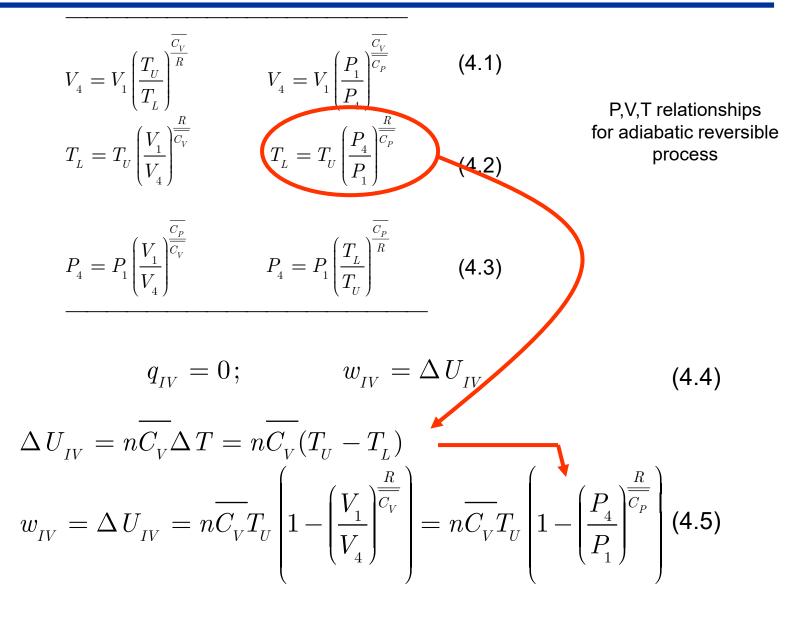


$$\Delta U_{III} = 0 \tag{3.1}$$

$$w_{III} = -nRT_L \ln \frac{V_4}{V_3} = nRT_L \ln \frac{P_4}{P_3}$$
(3.2)

$$q_{III} = -w_{III} = nRT_L \ln \frac{V_4}{V_3} = nRT_L \ln \frac{P_3}{P_4}$$
(3.3)

Step IV: adiabatic reversible compression $(T_L \rightarrow T_U)$



note: $\mathbf{w}_{IV} = -\mathbf{w}_{II}$ the two adiabatic steps have opposite work out \leftrightarrow work in

$$\Delta U_{II} = n \overline{C_V} (T_L - T_U) = w_{II} \quad \longleftarrow \quad w_{IV} = n \overline{C_V} (T_U - T_L) = \Delta U_{IV}$$

$$\begin{split} w_{II} &= n \overline{C_V} T_U \left(\left(\frac{P_3}{P_2} \right)^{\frac{R}{\overline{C_P}}} - 1 \right) = n \overline{C_V} T_U \left(\left(\frac{4}{5} \right)^{\frac{R}{\overline{C_P}}} - 1 \right) \\ & \bullet \\ w_{IV} &= n \overline{C_V} T_U \left(1 - \left(\frac{P_4}{P_1} \right)^{\frac{R}{\overline{C_P}}} \right) = n \overline{C_V} T_U \left(1 - \left(\frac{4.8}{6} \right)^{\frac{R}{\overline{C_P}}} \right) = n \overline{C_V} T_U \left(1 - \left(.8 \right)^{\frac{R}{\overline{C_P}}} \right) \end{split}$$

and now for the TOTAL cycle (T_U and T_L ; and P_1 and P_2 given)

$$w_{\text{total}} = w_{\text{I}} + w_{\text{II}} + w_{\text{III}} + w_{\text{IV}}$$

$$w_{\text{II}} = -w_{\text{IV}} \Longrightarrow w_{\text{total}} = w_{\text{I}} + w_{\text{III}}$$

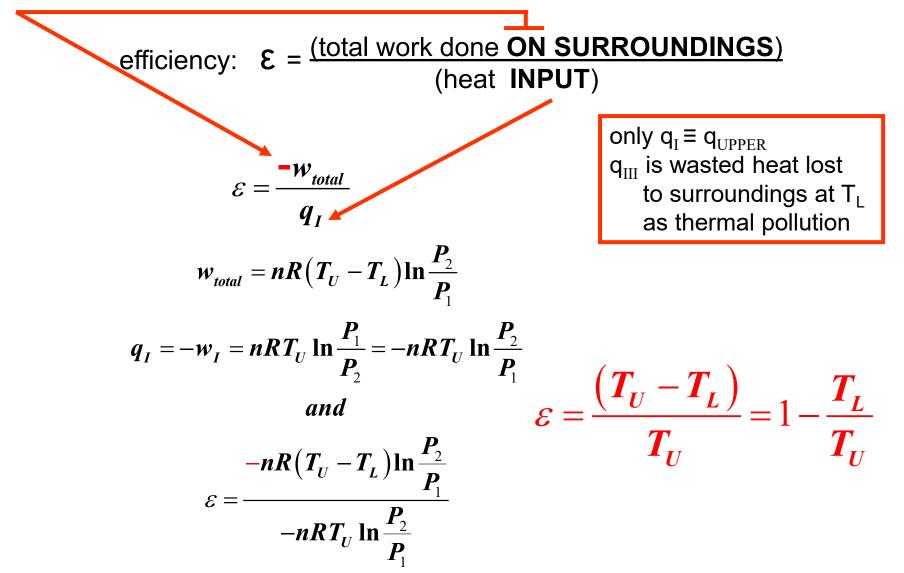
$$w_{I} = nRT_{U} \ln \frac{P_{2}}{P_{1}}$$

$$w_{III} = nRT_{L} \ln \frac{P_{4}}{P_{3}} \quad with \quad P_{3} = P_{2} \left(\frac{T_{L}}{T_{U}}\right)^{\frac{\bar{C}_{P}}{R}} \quad and \quad P_{4} = P_{1} \left(\frac{T_{L}}{T_{U}}\right)^{\frac{\bar{C}_{P}}{R}}$$

$$w_{III} = nRT_{L} \ln \left(\frac{P_{1} \left(\frac{T_{L}}{T_{U}}\right)^{\frac{\bar{C}_{P}}{R}}}{P_{2} \left(\frac{T_{L}}{T_{U}}\right)^{\frac{\bar{C}_{P}}{R}}}\right) = nRT_{L} \ln \left(\frac{P_{1}}{P_{2}}\right) = (-nRT_{L} \ln \left(\frac{P_{2}}{P_{1}}\right)^{-1})$$

$$w_{total} = nR(T_U - T_L) \ln \frac{P_2}{P_1}$$

15



Summary (see handout "Summary of Heat and Work for the Carnot Cycle Engines, Refrigerators, Heat Pumps")

general expressions for $(P_1, T_U) \xrightarrow{I} (P_2, T_U) \xrightarrow{II} (P_3, T_L) \xrightarrow{III} (P_4, T_L) \xrightarrow{IV} (P_1, T_U)$

ENGINE	q	W _{sys}	W _{surr}	
I. isothermal expansion	$+ nR T_v \ln \frac{P_1}{P_2}$ 1.3	$-nRT_{U}\ln\frac{P_{1}}{P_{2}}$ 1.2	$+ nR T_v \ln \frac{P_1}{P_2}$	heat in at T _H work out
II adiabatic expansion	0	$n\overline{C_V}(T_L - T_U)$ 2.4	$-n\overline{C_{_V}}(T_{_L}-T_{_U})$	work out
III. isothermal	$nRT_L \ln \frac{P_3}{R} =$	$-nRT_L \ln \frac{P_3}{R}$	$-nR T_L \ln \frac{P_1}{P_2}$	heat lost at T_L
compression	$-nR T_L \ln \frac{P_1}{P_2}$ 3.3&T.3	$-nR T_{L} \ln \frac{P_{3}}{P_{4}}$ $= nR T_{L} \ln \frac{P_{1}}{P_{2}}$ 3.2&T.3	r ₂	work in
IV. adiabatic compression	0	$n\overline{C_v}(T_v - T_L)$ 4.4	$-n\overline{C_{_V}}(T_{_U}-T_{_L})$	work in
net gain/cost	$q_{in} = q_I$		w _{total} = w _I +w _{II} +w _{III} +w _{IV} =	ε=w _{surr} /q _{in}
	$+ nR T_v \ln \frac{P_1}{P_2}$		$nR(T_{_U}-T_{_L})\ln\frac{P_{_1}}{P_{_2}}$	$\epsilon = (T_U - T_L)/T_U$

$$\varepsilon = \frac{\left(T_U - T_L\right)}{T_U} = 1 - \frac{T_L}{T_U}$$

lim $\varepsilon = 0$

must have q in at higher and q out at lower T

$$\lim_{T_L \to 0} \mathcal{E} =$$

 $T_U \rightarrow \infty$

 $T_L \rightarrow T_U$

1

perfect efficiency at finite temperatures only for T_{LOWER} = 0 K

- 1. Phenomenological statements (what is ALWAYS observed)
- [′] 2. Ideal gas Carnot *[reversible]* cycle efficiency of heat → work (Carnot cycle transfers heat only at T_U and T_L)
 - Any cyclic engine operating between T_U and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
 - 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
 - 5. Show that for this REVERSIBLE cycle

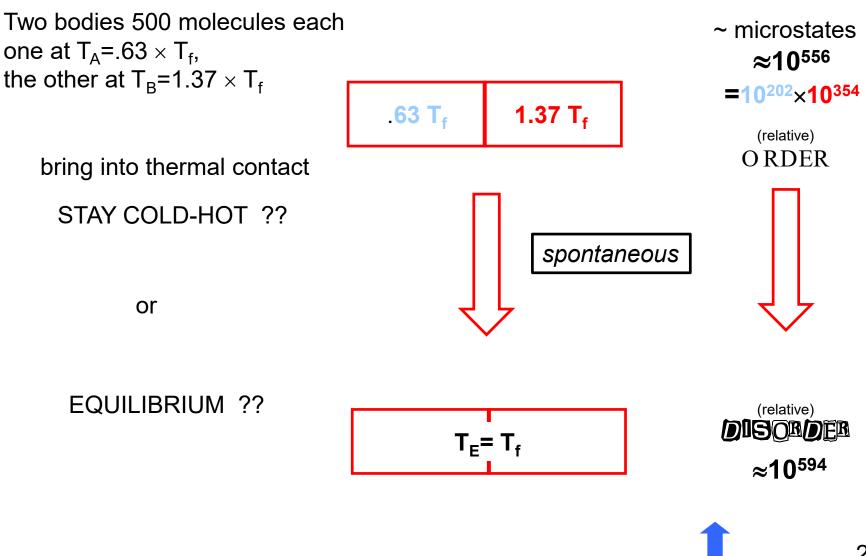
 $q_U + q_L \neq 0$ (dq inexact differential $\oint dq \neq 0$) but

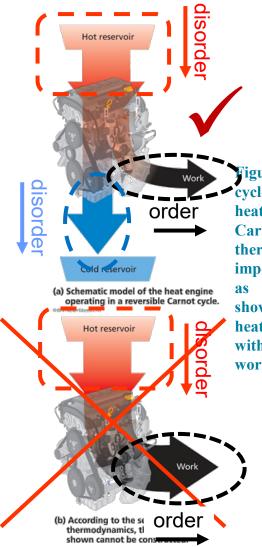
$$\frac{q_U}{T_U} + \frac{q_L}{T_L} = 0 \quad (something \text{ VERY VERY special about } \frac{\mathrm{d}q_{rev}}{T}; \quad \oint \frac{\mathrm{d}q_{rev}}{T} = !!!)$$

6. S, entropy and spontaneous changes

End of Lecture 9

gg69960627 www.gograph.com



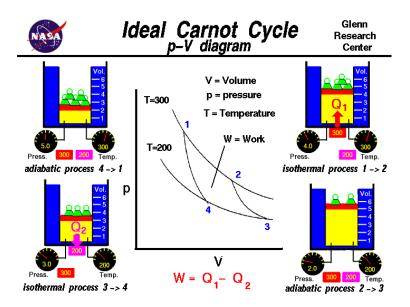


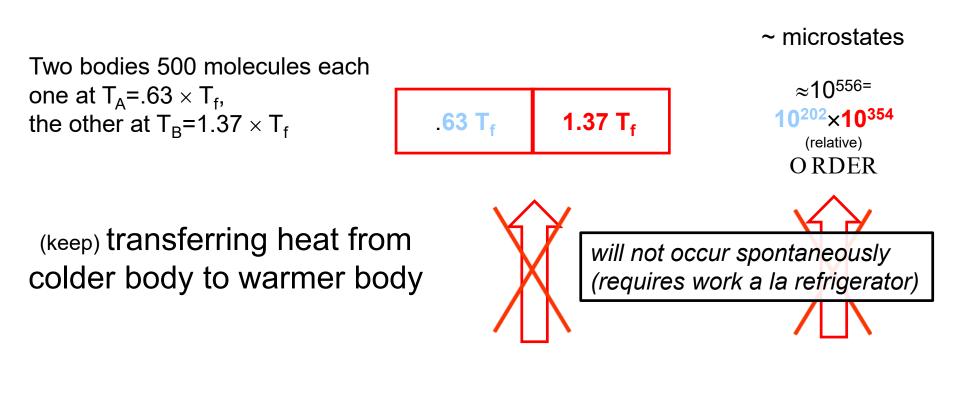
These considerations on the efficiency of reversible heat engines led to the Kelvin–Planck formulation of the **second law of thermodynamics:**

It is impossible for a system to undergo a cyclic process whose sole effects are the flow of heat into the system from a heat reservoir and the performance of an equal amount of work by the system on the surroundings.

Figure 5.14 Carnot heat engine cycle. (a) A schematic model of a heat engine operating in a reversible Carnot cycle. (b) The second law of thermodynamics asserts that it is impossible to construct a heat engine

shown that operates using a single heat reservoir and converts the heat withdrawn from the reservoir into work with 100% efficiency as shown





Two bodies 500 molecules each at T_f,

$$T_{E} = T_{f}$$
(relative)
(rela