Chemistry 163B Lecture 09

Carnot Arithmetic

Challenged Penmanship

Notes

see handout: Carnot Arithmetic

1

roadmap for second law

- 1. Phenomenological statements (what is ALWAYS observed)
- 2. Ideal gas Carnot [reversible] cycle efficiency of heat \rightarrow work (Carnot cycle transfers heat only at T_U and T_L)
- Any cyclic engine operating between T_U and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
- 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
- 5. Show that for this REVERSIBLE cycle

$$q_U + q_L \neq 0$$
 (dq inexact differential $\oint dq \neq 0$)

but

$$\frac{q_U}{T_U} + \frac{q_L}{T_L} = 0 \quad (something \ \textbf{VERY VERY special about} \quad \frac{d\mathbf{q}_{rev}}{T}; \quad \oint \frac{d\mathbf{q}_{rev}}{T} = !!!)$$

6. S, entropy and spontaneous changes

from lecture on 2nd Law and probability (disorder)

- Disorder, **W**, did not change during an adiabatic reversible expansion $(q_{rev} = 0)$
- Disorder, W, increased in isothermal reversible expansion (q_{rev} >0)
- Disorder, **W**, increased with T increase (q>0)
- Disorder, W, decreased with T decrease (q<0)
- As $T \rightarrow 0$, $W \rightarrow 1$

3

statements of the Second Law of Thermodynamics (roadmap #1)

1. Macroscopic properties of an <u>isolated system</u> eventually assume constant values (e.g. pressure in two bulbs of gas_becomes constant; two block of metal reach same T) [Andrews. p37]

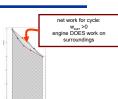
2. It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change in the surroundings. *Kelvin's Statement [Raff p 157]; Carnot Cycle*

3. It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. *Clausius's Statement, refrigerator*

4. In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process ~ Caratheodory's statement [Andrews p. 58]

goals of Carnot arithmetic (step 2 of roadmap)

1. Carnot cycle is "engine" that produces work from heat



- Define efficiency: efficiency=(net work done by machine)/(heat energy input to machine)
- 3. Today, arithmetic manipulations of 1^{st} Law results from ideal gas Carnot cycle (HW2 #10) to show that this efficiency depends only on the two temperatures at which heat is transferred to and from surroundings (the T_U of step 1 and T_L of step 3; the non-adiabatic paths)
- 4. Although for [reversible] Carnot cycle $\oint dq_{rev} \stackrel{\text{WILL}}{\neq} 0$ but $\oint \frac{dq_{rev}}{T} \stackrel{\text{WILL}}{=} 0$

5

from Carnot cycle

https://www.learnthermo.com/T1-tutorial/ch09/lesson-A/pg03.php

for system in complete cycle:

 $\Delta U=0$; q >0; w <0 (work DONE on surr) (Prob #10e)

q > 0 (q_{in}) at higher T_H; q < 0 (q_{out}) at lower T_L

efficiency= -w/q_{1→2}

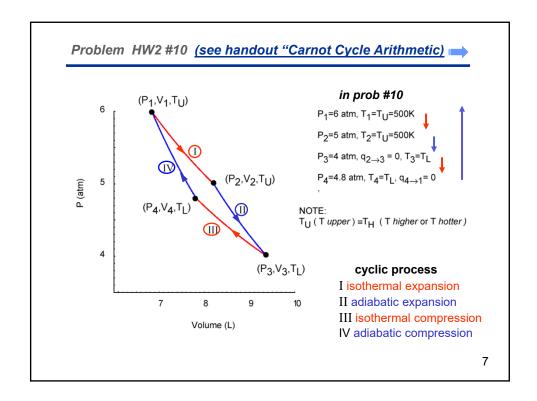
(how much total [net] work out (-sign) for heat in $1\rightarrow 2$)

efficiency will depend on T_U and T_L

HW4 prob #22 ε is ε fficiency

$$\varepsilon = \frac{T_H - T_C}{T_U} \qquad or \qquad \varepsilon = \frac{T_U - T_L}{T_U}$$

H=HOT C=COLD or U=UPPER L=LOWER



let's go

• get
$$w_I + w_{II} + w_{III} + w_{IV} = w_{total}$$

• get
$$q_I = q_{input}$$

Summary (see handout "Summary of Heat and Work for the Carnot Cycle Engines, Refrigerators, Heat Pumps")

 $\textbf{general expressions} \text{ for } (P_1, T_U) \xrightarrow{I} (P_2, T_U) \xrightarrow{II} (P_3, T_L) \xrightarrow{III} (P_4, T_L) \xrightarrow{IV} (P_1, T_U)$

ENGINE	q	W _{sys}	W _{surr}	
I. isothermal expansion	$+nR T_v \ln \frac{P_1}{P_2}$ 1.3	$-nRT_U \ln \frac{P_1}{P_2}$ 1.2	$+nRT_{v}\ln\frac{P_{1}}{P_{2}}$	heat in at T _H work out
II adiabatic expansion	0	$nC_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	$-nC_{_{\! \!$	work out
III. isothermal	$nR T_L \ln \frac{P_s}{P} =$	$-nR T_L \ln \frac{P_s}{P_4}$ $= nR T_L \ln \frac{P_1}{P_4}$ 3.28T.3	$-nRT_L \ln \frac{P_1}{P}$	heat lost at T _L
compression	P 3.3&T.3	P 3.2&T.3	1 2	work in
	$-nRT_L \ln \frac{r_1}{P_2}$	$= nR T_L \ln \frac{1}{P_2}$		
IV. adiabatic compression	0	$nC_{_{\! \!$	$-nC_{_{\! \!$	work in
net gain/cost	$q_{in} = q_I$		w _{total} = w _I +w _{II} +w _{III} +w _{IV} =	ε=w _{surr} /q _{in}
	$+nRT_{v} \ln \frac{P_{1}}{P_{2}}$		$nR(T_{_U}-T_{_L})\ln\frac{P_{_1}}{P_{_2}}$	ϵ = (T _U -T _L)/T _U

9

isothermal expansion at T_U (see handout "Carnot Cycle Arithmetic)

Step I Isothermal expansion, T_U , $V_1 \rightarrow V_2$:

$$\Delta U_I = 0 \tag{1.1}$$

$$w_{I} = -nRT_{U} \ln \frac{V_{2}}{V_{1}} = nRT_{U} \ln \frac{P_{2}}{P_{1}}$$
(1.2)

$$q_{I} = -w_{I} = nRT_{U} \ln \frac{V_{2}}{V_{1}} = nRT_{U} \ln \frac{P_{1}}{P_{2}}$$
 (1.3)

step II: adiabatic reversible compression
$$T_U \rightarrow T_L$$

$$V_{3} = V_{2} \left(\frac{T_{U}}{T_{L}}\right)^{\frac{\overline{C_{V}}}{R}} \qquad V_{3} = V_{2} \left(\frac{P_{2}}{P_{3}}\right)^{\frac{\overline{C_{V}}}{C_{P}}} \qquad (2.1)$$

$$T_{L} = T_{U} \left(\frac{V_{2}}{V_{3}}\right)^{\frac{R}{\overline{C_{V}}}} \qquad T_{L} = T_{U} \left(\frac{P_{3}}{P_{2}}\right)^{\frac{R}{\overline{C_{P}}}} \qquad (2.2)$$

$$P_{1} = T_{2} \left(\frac{V_{2}}{V_{3}}\right)^{\frac{\overline{C_{V}}}{C_{V}}} \qquad P_{2} = P_{2} \left(\frac{T_{L}}{T_{U}}\right)^{\frac{\overline{C_{P}}}{R}} \qquad (2.3)$$

$$Q_{II} = 0; \qquad w_{II} = \Delta U$$

$$\Delta U_{II} = n\overline{C_{V}}\Delta T = n\overline{C_{V}}(T_{L} - T_{U})$$

$$w_{II} = \Delta U_{II} = n\overline{C_{V}}T_{U} \left(\frac{V_{2}}{V_{3}}\right)^{\frac{R}{\overline{C_{V}}}} - 1 = n\overline{C_{V}}T_{U} \left(\frac{P_{3}}{P_{2}}\right)^{\frac{R}{\overline{C_{P}}}} - 1 \qquad (2.5)$$

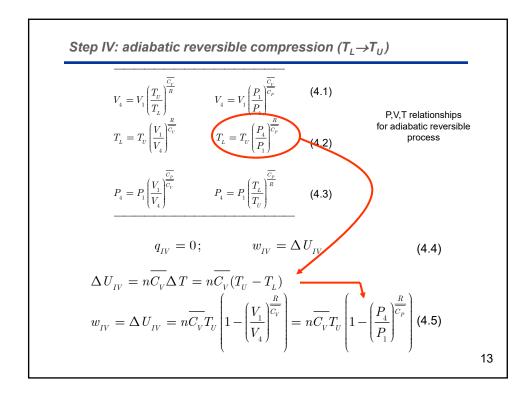
11

Step III: isothermal reversible compression at T_L

$$\Delta U_{III} = 0 \tag{3.1}$$

$$w_{III} = -nRT_L \ln \frac{V_4}{V_2} = nRT_L \ln \frac{P_4}{P_2}$$
 (3.2)

$$q_{III} = -w_{III} = nRT_{L} \ln \frac{V_{4}}{V_{3}} = nRT_{L} \ln \frac{P_{3}}{P_{4}}$$
 (3.3)



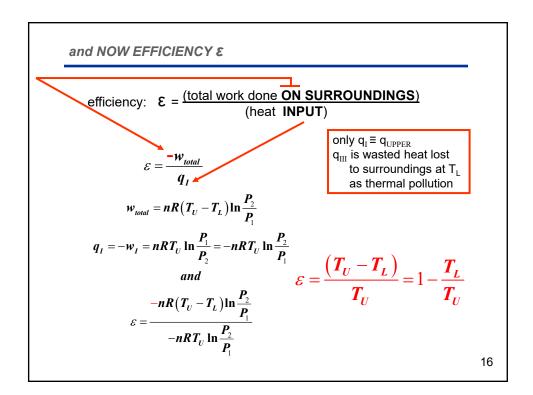
note: \mathbf{w}_{IV} =- \mathbf{w}_{II} the two adiabatic steps have opposite work out \leftrightarrow work in

$$\begin{split} \Delta U_{II} &= n \overline{C_V} (T_L - T_U) = w_{II} & \longrightarrow w_{IV} = n \overline{C_V} (T_U - T_L) = \Delta U_{IV} \\ w_{II} &= n \overline{C_V} T_U \left(\left(\frac{P_3}{P_2} \right)^{\frac{R}{\overline{C_P}}} - 1 \right) = n \overline{C_V} T_U \left(\left(\frac{4}{5} \right)^{\frac{R}{\overline{C_P}}} - 1 \right) = n \overline{C_V} T_U \left((.8)^{\frac{R}{\overline{C_P}}} - 1 \right) \\ \psi_{IV} &= n \overline{C_V} T_U \left(1 - \left(\frac{P_4}{P_1} \right)^{\frac{R}{\overline{C_P}}} \right) = n \overline{C_V} T_U \left(1 - \left(\frac{4.8}{6} \right)^{\frac{R}{\overline{C_P}}} \right) = n \overline{C_V} T_U \left(1 - (.8)^{\frac{R}{\overline{C_P}}} \right) \end{split}$$

and now for the TOTAL cycle (
$$T_U$$
 and T_L ; and P_1 and P_2 given)

$$\begin{aligned} \mathbf{W}_{\text{total}} &= \mathbf{W}_{\text{I}} + \mathbf{W}_{\text{II}} + \mathbf{W}_{\text{III}} + \mathbf{W}_{\text{IV}} \\ \mathbf{W}_{\text{II}} &= -\mathbf{W}_{\text{IV}} \Rightarrow & \mathbf{W}_{\text{total}} &= \mathbf{W}_{\text{I}} + \mathbf{W}_{\text{III}} \\ \mathbf{W}_{I} &= nRT_{L} \ln \frac{P_{2}}{P_{3}} \quad \text{with} \quad P_{3} &= P_{2} \left(\frac{T_{L}}{T_{U}} \right)^{\frac{\bar{C}_{P}}{R}} \quad \text{and} \quad P_{4} &= P_{1} \left(\frac{T_{L}}{T_{U}} \right)^{\frac{\bar{C}_{P}}{R}} \\ \mathbf{W}_{III} &= nRT_{L} \ln \left(\frac{P_{1} \left(\frac{T_{L}}{T_{U}} \right)^{\frac{\bar{C}_{P}}{R}}}{P_{2} \left(\frac{T_{L}}{T_{U}} \right)^{\frac{\bar{C}_{P}}{R}}} \right) = nRT_{L} \ln \left(\frac{P_{1}}{P_{2}} \right) = -nRT_{L} \ln \left(\frac{P_{2}}{P_{1}} \right) \end{aligned}$$

$$\mathbf{W}_{total} = nR \left(T_{U} - T_{L} \right) \ln \frac{P_{2}}{P_{1}}$$



Summary (see handout "Summary of Heat and Work for the Carnot Cycle Engines, Refrigerators, Heat Pumps")

$\textbf{general expressions} \text{ for } (P_1, T_U) \xrightarrow{I} (P_2, T_U) \xrightarrow{II} (P_3, T_L) \xrightarrow{III} (P_4, T_L) \xrightarrow{IV} (P_1, T_U)$

ENGINE	q	W _{sys}	W _{surr}	
I. isothermal expansion	$+nRT_v \ln \frac{P_1}{P_2}$ 1.3	$-nRT_v \ln \frac{P_1}{P_2} $ 1.2	$+nRT_{U} \ln \frac{P_{1}}{P_{2}}$	heat in at T _H work out
II adiabatic expansion	0	$n\overline{C_{_{\!V}}}(T_{_{\!L}}-T_{_{\!U}})$ 2.4	$-nC_{_{\! \!$	work out
III. isothermal	$nR T_L \ln \frac{P_s}{R} =$	$-nRT_L \ln \frac{P_s}{R}$	$-nRT_L \ln \frac{P_1}{R}$	heat lost at T _L
compression	P ₄ 3.3&T.3	P ₄ 3.2&T.3	P_2	work in
	$-nR T_L \ln \frac{T_1}{P_2}$	$-nR T_L \ln \frac{P_{\S}}{P_{+}}$ $= nR T_L \ln \frac{P_{1}}{P_{2}}$ 3.28T.3		
IV. adiabatic compression	0	$n\overline{C_{_{ar{V}}}}(T_{_{ar{U}}}-T_{_{ar{L}}})$ 4.4	$-nC_{_{\! \!$	work in
net gain/cost	$q_{in} = q_I$		$W_{total} = W_{l} + W_{ll} + W_{lV} = W_{l}$	ε=w _{surr} /q _{in}
	$+nR T_U \ln \frac{P_1}{P_2}$		$nR(T_{_U}-T_{_L})\ln\frac{P_{_1}}{P_{_2}}$	$\varepsilon = (T_U - T_L)/T_U$

17

some limits on efficiency of ideal engine

$$\varepsilon = \frac{\left(T_U - T_L\right)}{T_U} = 1 - \frac{T_L}{T_U}$$

$$\lim_{T_L\to T_U}\varepsilon=\mathbf{0}$$

must have q in at higher and q out at lower T

$$\lim_{T_1 \to 0} \varepsilon =$$

or

$$\lim_{T_U\to\infty}\varepsilon=$$

 $\begin{array}{c} \text{perfect efficiency at} \\ \text{finite temperatures only} \\ \text{for } T_{\text{LOWER}} = 0 \text{ K} \end{array}$

roadmap for second law

1. Phenomenological statements (what is ALWAYS observed)

- 2. Ideal gas Carnot <code>[reversible]</code> cycle efficiency of heat \to work (Carnot cycle transfers heat only at T $_U$ and T $_L$)
- Any cyclic engine operating between T_U and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
- 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
- 5. Show that for this REVERSIBLE cycle

 $q_U + q_L \neq 0$ (dq inexact differential $\oint dq \neq 0$)

but

6. S, entropy and spontaneous changes

19

End of Lecture 9

gg69960627 www.gograph.com

