Chemistry 163B Winter 2020

Lectures 2-3

Heat and Work

Menu: for TODAY(s)

- Heat (q), Work (w) and the First Law of Thermodynamics $\Delta U=q+w$
- Example calculations of $\mathbf{q}, \mathbf{w}, \mathrm{U}$ for reversible and irreversible expansions of ideal gas (comparisons and 'take home messages')
- Molecular picture of heat and work energy transfers

Chemistry 163B reserve books 2020 (S\&E Library) milliby handout \#2

7 Results					
	BOOK Thermodynamics, statistical thermodynamics, and kinetics : physical chemistry Engel, Thomas, 1942- author. Reid, Philip (Philip J.), author. 2019 fi Course reserve tet Available at Science \& Engineering Library Reserves - Ask at Circulation Desk (QC311.5.E65 2019))	"	[*	...
	во0к Chemical thermodynamics : basic theory and methods Klotz, Irving M. (lrving Myron), 1916-2005. Rosenberg, Robert M., 1926- 1994 if COURSE RESERVE - Available at Science \& Engineering Library Reserves - Ask at Circulation Desk (QD501 .K7556 1994)	"	-	*	.
	Book Molecular thermodynamics Dickerson, Richard Earl, 1931- 1969 fic Course reserve net Available at Science \& Engineering Library Reserves - Ask at Circulation Desk (QD501 .D47))	"	E	*	...
	muItple veraions Thermodynamics, statistical thermodynamics, \& kinetics Engel, Thomas, 1942-: Reid, Philip (Philip J.) fiJ COURSE RESERVE [102 versions found. See all versions,				
	воок Principles of physical chemistry Raff, Lionel M. 2001 fil Course reserve nt Available at Science \& Engineering Library Reserves - Ask at Circulation Desk (QD453.2 .R34 2001)	*	E	*	..
	BOOK Principles of Physical Chemistry - Part A (Personal Copy) Raff fiJ Course reserve nt Available at Science \& Engineering Library Reserves - Ask at Circulation Desk (CHE. 108) ,	"	E	*	...
	BOOK Principles of Physical Chemistry - Part B (Personal Copy) Raff COURSE RESERVE Available at Science \&. Engineering Library Reserves - Ask at Circulation Desk (CHE. 109) ,	"	E	*	...

- $\boldsymbol{d f}$ is 'differential' representing an infinitesimal change
- to calculate Δf a finite change $\Delta f=\int_{\text {initial }}^{\text {final }} d f$
- if \boldsymbol{f} is a state function, the integral around a closed (cyclic) path (finish=start) is

$$
\begin{gathered}
\oint d f=0 \\
\overline{\bar{\downarrow}}
\end{gathered}
$$

a few "FACTS OF (thermodynamic) LIFE"

- if the 'system' goes from one state to another by differing paths initial state \longrightarrow final state

- the change in some aspect of the system can either be
independent of the path taken
(depends only on the initial and final values of the state variables)
or
depend on the path taken
- if change is path independent \Rightarrow exact differential, there is underlying STATE FUNCTION
- if change is path dependent \Rightarrow inexact differential, no underlying property of the state of system

all transfers of energy can be classified as heat (q) or work (w)

We will see (and demonstrate):

- heat (q) and work (w) are NOT PROPERTIES of a system but correspond to TRANSFERS of energy into $(+)_{\text {sys }}$ or out of $(-)_{\text {sys }}$ the system [e.g. there is no underlying property "heat" of a system"]
- when a system goes from an initial to a final state, e.g. $\left(P_{i}, V_{i j}, T_{i}\right) \Rightarrow\left(P_{f}, V_{f}, T_{f}\right)$ the values of q and w will DEPEND ON THE PATH taken between the states
- a small changes in a path-dependent quantities are INEXACT DIFFERENTIALS indicated by e.g. $\boldsymbol{d}) q$ and $\mathbb{t} w$
the FIRST LAW of thermodynamics $\underset{\underline{\underline{\underline{\underline{L A W}}}} \mathrm{E} \& R_{4 \text { th }} p p .30,39-41}{ }$
- \mathbf{U} is symbol for INTERNAL ENERGY of a system
- $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}+. \ldots$;

$$
d U=\pi q+\pi w+\sum .
$$

$\mathrm{dn}_{\mathrm{i}}=0$ closed system, ignore for now

- $\Delta \mathbf{U}_{\text {sys }}=-\Delta \mathbf{U}_{\text {surr }}$ (conservation of energy)
- U is state function
- $\Delta \mathbf{U}$ does not depend on path (only on initial and final states)
equivalent statements
- dU is an exact differential

heat capacity (E\&R section 2.11) ${ }_{[4 t h]}$

- $\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}=\boldsymbol{C} \quad$ heat capacity $\left[\boldsymbol{J} K^{-1}\right]$ extensive the amount (transfer) of heat required to raise substance 1 K
- $\frac{\boldsymbol{d} q}{d \boldsymbol{T}}=\boldsymbol{n} \overline{\boldsymbol{C}} \quad$ molar heat capacity $\left[\boldsymbol{J ~ m o l}^{-1} \mathrm{~K}^{-1}\right]$ intensive
the amount (transfer) of heat requires to raise 1 mol substance 1 K
\bar{C} generally depends on T and conditions for example ideal monatomic gas
molar heat capacity at constant volume $\overline{\boldsymbol{C}}_{V}=\frac{3}{2} \boldsymbol{R}$
molar heat capacity at constant pressure $\bar{C}_{P}=\frac{5}{2} R$
$\boldsymbol{E}=\frac{3}{2} \boldsymbol{n} \boldsymbol{R} \boldsymbol{T}$ (true!!) but why does it take more heat to raise T at constant P than at constant V ??
change of energy by heat transfer

$$
\begin{array}{ll}
d q=C d T=n \bar{C} d T & (C \text { is extensive, } \\
q=\int_{\text {path }} d q=\int_{\text {path }} n \bar{C} d T & \bar{C} \text { is intensive })
\end{array}
$$

\bar{C} will generally depend on T and path (i.e.conditions)
$q>0 \Rightarrow$ energy (heat) gained by system (endothermic) cools surroundings
$\mathrm{q}<0 \Rightarrow$ energy (heat) lost by system (exothermic)

heat only transfer; thermal equlibrium (also zeroth law; E\&R p11) ${ }_{[4 t h]}$

change of energy by work done ON system energy into system

- isolated
- isothermal
- adiabatic
- "against constant pressure"
- reversible process $P_{i n t}=P_{\text {ext }}$
a (ideal) process that proceeds so slowly that an infinitesimal change of conditions causes the process to proceed in the opposite (reverse) direction
- irreversible process
all other (real) processes proceeding at finite rate

derivation of $w=-P \Delta V$ (work of expansion or PV work)

w^{*} surr $=$ work done ON SURROUNDINGS

- pressure=force/area

- $\Delta V=A \times \Delta h$
- $\mathrm{w}^{*}{ }_{\text {surr }}=$ Fơrce \times Distance
- $W_{\text {surr }}=F \times \Delta \underline{H}$
- $w^{*}{ }_{\text {surr }}=P \times A \times \Delta h$
- $\mathrm{w}^{*}{ }_{\text {surr }}=\mathrm{P} \times \Delta \mathrm{V}=\mathrm{P} \Delta \mathrm{V}$
- wani W = wotk ON SYTrinn
- $w=-P \Delta V$
to be consistent with work done ON system

for IDEAL GAS

- $\mathrm{U}(\equiv \mathrm{E})$ depends ONLY on T (ideal gas, previous class)
- isothermal, $\Delta T=0$,
- $\Delta \mathrm{U}=0=\mathrm{q}+\mathrm{w}$ (ideal gas)
- $q=-$ w
- adiabatic: $\mathrm{q}=0, \Delta \mathrm{U}=\mathrm{w}$ (in general)
- monatomic ideal gas
- $U=(3 / 2) n R T$
- $\mathrm{C}_{\mathrm{V}}=(3 / 2) \mathrm{n} \mathrm{R}$ (\sim prove later)
- $C_{P}=(5 / 2) n R$ (prove later)

work of expansion ideal gas (3 conditions)

- isothermal against constant $P_{\text {ext }}$
- adiabatic against constant $P_{\text {ext }}$
- isothermal reversible
- atiatie (later)
why ??
- understanding of thermodynamic conditions
- how to calculate $w=-\int P d v$
- compare $w_{\text {rev }}$ vs $w_{\text {irrev }}$
- AND lots of 'rewards' on HW and EXAMS

\section*{Pres | system is gas inside piston; weights are surrounding |
| :--- |}

isothermal expansion against constant pressure (irreversible)

-system is piston and gas inside; weights represent external pressure of surroundings

- $\mathrm{P}_{\text {ext }}=1$ atm (during volume change) ; $\Delta \mathrm{V}_{\text {sys }}>0 ; \mathrm{w}_{\text {sys }}=-\mathrm{P} \Delta \mathrm{V}_{\text {sys }}<0$
- work (<0) is done BY SYSTEM ON SURROUNDINGS (1 atm weight lifted)
- E for ideal gas depends only on T
isothermal ideal gas $\Delta \mathrm{T}=0 \Rightarrow \Delta \mathrm{U}=0$ since $\mathrm{w}<0 ; \mathrm{q}=-\mathrm{w}>0$; heat absorbed by system

Pres system is gas inside piston; weights are surrounding

- system is piston and gas inside; weights represent external pressure of surroundings
- $\mathrm{P}_{\text {ext }}=1$ atm (during volume change); $\Delta \mathrm{V}_{\text {sys }}>0 ; \mathrm{w}_{\text {sys }}=-\mathrm{P}_{\text {ext }} \Delta \mathrm{V}_{\text {sys }}<0$
- work (<0) is done BY SYSTEM ON SURROUNDINGS (1 atm weight lifted)
- $\mathrm{w}<0 ; \mathrm{q}=0$ (adiabatic); $\mathrm{E}_{\text {sys }}\left(=\mathrm{U}_{\text {sys }}\right)<0$; energy (potential) of surroundings increases \Rightarrow energy of system decreases \Rightarrow gas cools $\Delta T<0$

Pressure-Volume work reversible expansion

- w on surr rev > w on surr irrev (more weights raised in irrev)
- $w=-\int P_{\text {ext }} d V$
- $P_{\text {ext }}=P_{\text {int }}=n R T / V \Rightarrow w=-\int n R T / V d V$
- isothermal $\Rightarrow T=$ const $\Rightarrow \mathrm{w}=-\mathrm{nRT} \int \mathrm{dV} / \mathrm{V}$ $w=-n R T \ln \left(\mathrm{~V}_{\text {final }} / \mathrm{V}_{\text {initial }}\right)$

$w_{\text {other }}(E \& R p .32)_{4 t h}$ Table 2.1 Types of Work

change of energy by work done ON system

$$
\begin{aligned}
& \boldsymbol{d} \boldsymbol{w}=\boldsymbol{d} \boldsymbol{w}_{P V}+\boldsymbol{d} \boldsymbol{w}_{\text {other }} \\
& \boldsymbol{d} \boldsymbol{w}=-\boldsymbol{P}_{\text {ext }} \boldsymbol{d} \boldsymbol{V}+\boldsymbol{d} \boldsymbol{w}_{\text {other }} \\
& \boldsymbol{w}=\int-\boldsymbol{P}_{\text {ext }} \boldsymbol{d} \boldsymbol{V}+\int \boldsymbol{d} \boldsymbol{w}_{\text {other }}
\end{aligned}
$$

Types of Work	Variables, System definition	Equation for System-Based Work	SI Units
Gas expansion and compression	Pressure in the surroundings at the systemsurroundings boundary ($P_{\text {ext }}$), volume (V) The gas is the system.	$-\int_{V_{1}}^{V_{t}} P_{\mathrm{ext}} d V$	$\mathrm{Pa} \mathrm{m}^{3}=\mathrm{J}$
Spring stretching and compression	Force (F), distance (\mathbf{x}) The spring is the system.	$w=\int_{x_{1}}^{x_{f}} \mathbf{F} \cdot d \mathbf{x}$	$\mathrm{Nm}=\mathrm{J}$
Bubble expansion and contraction	Surface tension (γ), surface area (σ) The content of the bubble is the system.	$w=-\int_{\sigma_{i}}^{\sigma_{f}} \gamma d \sigma$	$\left(\mathrm{Nm}{ }^{-1}\right)\left(\mathrm{m}^{2}\right)=\mathrm{J}$
Current passes through conductor	Electrical potential difference (ϕ), electrical charge (Q) The conductor is the system.	$w=\int_{0}^{Q} \phi d Q^{\prime}$	$\mathrm{VC}=\mathrm{J}$
Done lifting a weight against gravity (weight is surroundings)	Mass (m), position (h)	$w=-\int_{h_{1}}^{h_{2}} m g d h$	$\mathrm{kg} \mathrm{m} \mathrm{m}^{\mathbf{s}}{ }^{-2}=\mathrm{J}$

Isothermal expansion: $P_{\text {ext }}=$ const ideal gas (irreversible)

1 mole
300 K
10 atm
$\mathrm{~V}_{1}$

1mole 300K
1 atm
V_{2}

Isothermal expansion: $P_{\text {ext }}=$ const; ideal gas; Graphical Interpretation

Isothermal expansion: $P_{\text {ext }}=$ const ideal gas (irreversible)

Pressure-Volume work reversible isothermal expansion; $P_{\text {ext }}=P_{\text {int }}$

1mole
300K
1 atm
V_{2}
isothermal irreversible vs isothermal reversible: which does more work on surroundings??

Isothermal expansion: $P_{\text {ext }}=P_{\text {int }}$ ideal gas; Graphical Interpretation

Pressure-Volume work reversible isothermal expansion; $P_{\text {ext }}=P_{\text {int }}$

$$
P_{\mathrm{ext}}=10 \mathrm{~atm} \rightarrow 1 \mathrm{~atm}
$$

(more work done ON surroundings
by reversible than irreversible; $w_{\text {irrev }}=-2.244 \mathrm{~kJ}$)

Pressure-Volume work: irreversible adiabatic expansion $P_{\text {ext }}=$ constant

adiabatic expansion against constant pressure (irreversible)

1mole	$\Delta U=0+w=-\boldsymbol{P}_{\text {ext }}\left(V_{2}-V_{1}\right)=-1 \operatorname{atm}\left(\frac{\boldsymbol{n R} T_{2}}{\boldsymbol{P}_{2}}-\frac{\boldsymbol{n R} T_{1}}{\boldsymbol{P}_{1}}\right)$	1mole Th? K
300K	Will soon show	
10 atm	holds for ideal gas $\boldsymbol{\Delta U}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}} \boldsymbol{\Delta} \boldsymbol{T}=\frac{3}{2} \boldsymbol{n} \boldsymbol{R}\left(\boldsymbol{T}_{2}-\boldsymbol{T}_{1}\right)$.	1 atm
V_{1}	-1atm $(1 \mathrm{~mol}) R\left(\frac{T_{2}}{1 \mathrm{~atm}}-\frac{300 \mathrm{~K}}{10 \mathrm{~atm}}\right)=\frac{3}{2}(1 \mathrm{~mol}) R\left(T_{2}-300 \mathrm{~K}\right)$	V_{2}

$$
* T_{2}=192 \mathrm{~K} \quad \mathrm{w}=-1347 \mathrm{~J}=-1.347 \mathrm{~kJ}
$$

no q in, less work done than isothermal (-2.244 kJ) 27

- total energy:
sum of [number of particles in energy level $(v) \times$ energy of that level (ε)] $\mathrm{E}=\Sigma_{n} v_{n} \varepsilon_{n}$
- heat only (no work):
redistributes particles among levels $\mathrm{q}>0 \Rightarrow$ more particles to higher energy levels $q<0 \Rightarrow$ more particles to lower energy levels
- P-V work only (adiabatic) particle in 3D cube: CHEM 163A DON'T FRET

larger volume $\quad(w<0) \Rightarrow$ energy levels lower and get more closely spaced smaller volume $(w>0) \Rightarrow$ energy levels higher and less closely spaced

molecular picture of heat and work: constant volume heating (E\&R p 44-45) 4th

He gas in 10 nm 'box'; 0.2 K

He gas in 10 nm 'box'; 0.3K

heating of He , constant V

$$
w=0 ; q>0
$$

1. energy levels same spacing: $\Delta V=0, \mathrm{w}=0$ (no change in size of box)
2. greater number of atoms in higher energy levels: $q>0$ raises U;
3. $\Delta U>0 \quad(\Delta E>0)$

molecular picture of heat and work:

 reversible adiabatic expansion (E\&R p-Fig-2-10) $)_{\text {th }}$He gas in 8 nm 'box'; $0.31 \mathrm{~K} \longrightarrow$ He gas in 10 nm 'box'; 0.2 K

- for reversible adiabatic expansion (no heat in) populations in levels do not change
- does total energy $E=\Sigma n_{i} \varepsilon_{i}$ and thus temperature increase or decrease??

Figure 2-10 Energy levels for a He atom confined to a one-dimensional box. Boxes are of length (a) $\mathbf{1 0 . 0} \mathbf{~ n m}$ and (b) $\mathbf{8 . 0 0} \mathbf{n m}$. Circles indicate the probability that the He atom has an energy corresponding to each of the energy levels at 0.20 K . Each circle indicates a probability of $\mathbf{0 . 0 1 0}$. For example, the probability that the energy of the He atom corresponds to the lowest energy level in the $\mathbf{1 0 . 0} \mathbf{~ n m}$ box is 0.21
isothermal expansion $\Delta \mathrm{U}=0$

(a) $a=10.0 \mathrm{~nm} \quad 0.20 \mathrm{~K}$
(b) $a=8.00 \mathrm{~nm} \quad 0.20 \mathrm{~K}$
$\Delta T=0$ energy levels and occupancies both change

\checkmark Heat (q), Work (w) and the First Law of Thermodynamics $\Delta \mathbf{U}=\mathbf{q}+\mathbf{w}$
\checkmark Example calculations of $\mathbf{q}, \mathbf{w}, \mathbf{U}$ for reversible and irreversible expansions of ideal gas (comparisons and 'take home messages')
\checkmark Molecular picture of heat and work energy transfers

End of

Lectures 2-3

