Lectures 2-3 Heat and Work

1

3

5

Menu: for TODAY(s)

- Heat (q), Work (w) and the First Law of Thermodynamics $\Delta U \equiv q+w$
- Example calculations of $\mathbf{q}, \mathbf{w}, \mathbf{U}$ for reversible and irreversible expansions of ideal gas (comparisons and 'take home messages')
- Molecular picture of heat and work energy transfers

2

4

all transfers of energy can be classified as heat (q) or work (w)

We will see (and demonstrate):

- heat (q) and work (w) are NOT PROPERTIES of a system but correspond to TRANSFERS of energy into $(+)_{\text {sys }}$ or out of $(-)_{\text {sys }}$ the system [e.g. there is no underlying property "heat" of a system"]
- when a system goes from an initial to a final state, e.g. $\left(P_{i}, V_{i}, T_{i}\right) \Rightarrow\left(P_{f}, V_{f}, T_{f}\right)$ the values of \mathbf{q} and \mathbf{w} will DEPEND ON THE PATH taken between the states
- a small changes in a path-dependent quantities are INEXACT DIFFERENTIALS indicated by e.g. (f) q and ($\partial \mathrm{f} w$

6

7

9

11
heat capacity (E\&R section 2.11) ${ }_{[\text {[th] }]}$

- $\frac{\pi q}{d T}=C \quad$ heat capacity $\left[J K^{-1}\right]$ extensive
the amount (transfer) of heat required to raise substance 1 K
- $\frac{d q}{d T}=n \bar{C} \quad$ molar heat capacity $\left[J \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right]$ intensive
the amount (transfer) of heat requires to raise 1 mol substance 1 K

> | \bar{C} generally depends on \boldsymbol{T} and conditions |
| :---: |
| for example ideal monatomic gas |

$$
\left.E=\frac{3}{2} n \boldsymbol{R} \boldsymbol{T} \text { (true }!!\right) \text { but why does it take more heat to raise T at constant } \mathrm{P} \text { thanat constant } \mathrm{V} ? ?
$$

8

10

processes: definitions of constraints

- isolated	q=0; w=0
- isothermal	$\Delta T=0$
- adiabatic	$q=0$
- "against constant pressure"	

a (ideal) process that proceeds so slowly that an infinitesimal change of conditions causes the process to proceed in the opposite (reverse) direction

- irreversible process all other (real) processes proceeding at finite rate

12

Lectures 2-3 Heat and Work

13

15

17

ideal gas and energy, heat, work

for IDEAL GAS

- U(三E) depends ONLY on T (ideal gas, previous class)
- isothermal, $\Delta \mathrm{T}=0$,
- $\Delta \mathrm{U}=0=\mathrm{q}+\mathrm{w}$ (ideal gas)
- $q=-w$
- adiabatic: $\mathrm{q}=0, \Delta \mathrm{U}=\mathrm{w}$ (in general)
- monatomic ideal gas
- $U=(3 / 2) n R T$
- $\mathrm{C}_{\mathrm{V}}=(3 / 2) \mathrm{n} \mathrm{R}$ (\sim prove later)
- $\mathrm{C}_{\mathrm{P}}=(5 / 2) \mathrm{n} \mathrm{R}$ (prove later)

16

18

Lectures 2-3 Heat and Work

19

21

23

22

24

25

27

29

26

28

30

Lectures 2-3 Heat and Work

31

Menu: for TODAY(s)

\checkmark Heat (q), Work (w) and the First Law of Thermodynamics $\Delta U \equiv q+w$
\checkmark Example calculations of $\mathbf{q}, \mathbf{w}, \mathbf{U}$ for reversible and irreversible expansions of ideal gas (comparisons and 'take home messages')
\checkmark Molecular picture of heat and work energy transfers

End of

Lectures 2-3

33

