Chemistry 163B Winter 2020 notes for lecture 4- First Law Calculations

Chemistry 163B	
Lecture 4	
1st Law Calculations for Ideal Gases	
Winter 2020	
Challenged Penmanship	
Notes	1

Menu: for TODAY(s)

- Review of equivalent statements of $1^{\text {st }}$ Law
- Ideal gas calculations for REVERSIBLE adiabatic expansion (fourth condition, viz lectures 2-3, slide \#13)
- P, V, T constraints for reversible expansion ideal gas (HW\#2 15)
- Cyclic path: combination of reversible adiabatic and isothermal expansions/compressions (HW\#2 10, HELLO CARNot Cycle !!)

two relationships for ideal gasses: a short look ahead (will prove rigorously in next lecture)
adiabatic processes and the First Law
- for any substance (only $P-V$ work)
$d U_{v}=d q_{v}=n \bar{C}_{v} d T$ and $\Delta \mathrm{U}_{v}=\int n \bar{C}_{v} d T$ for a constant volume process
- but for an ideal gas
$d U=n \bar{C}_{V} d T$ and $\Delta U=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process) [other parts of path, i.e. changes of P and V with constant T, give zero contribution to ΔU]

Chemistry 163B Winter 2020 notes for lecture 4- First Law Calculations

for a reversible adiabatic expansion of ideal gas
important derivation (next few slides):

$$
\begin{aligned}
& \text { equate } \mathrm{dU} \text { and work for reversible adiabatic process } P_{\text {ext }}=P_{\text {int }}=P \\
& d U=\boldsymbol{d} w=-P d V \\
& d U=n \bar{C}_{V} d T=-P d V \text { (ideal gas) } \\
& n \bar{C}_{\boldsymbol{r}} d T=-\frac{n R T}{V} d V \\
& \frac{\bar{C}_{r}}{R} \frac{d T}{T}=-\frac{d V}{V}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\bar{C}_{F}}{R} \ln \frac{T_{\text {fnal }}}{T_{\text {ininial }}}=-\ln \frac{V_{\text {fnnal }}}{V_{\text {initial }}}=\ln \frac{V_{\text {ininal }}}{V_{\text {fnnal }}} \\
& \text { or } \\
& \frac{\overline{\boldsymbol{C}}_{\text {r }}}{\boldsymbol{R}} \ln \frac{\boldsymbol{T}_{2}}{\boldsymbol{T} 1}=-\ln \frac{\boldsymbol{V}_{2}}{\boldsymbol{V}_{1}}=\ln \frac{\boldsymbol{V}_{1}}{\boldsymbol{V}_{2}}
\end{aligned}
$$

for adiabatic, reversible, ideal gas: TvsV $\quad\left(\frac{T_{2}}{T}\right)^{0 / 2}=\left(\frac{V_{1}}{V}\right)$

$$
\begin{aligned}
\frac{\bar{C}_{V}}{R} \ln \frac{\boldsymbol{T}_{2}}{\boldsymbol{T} 1} & =\ln \frac{\boldsymbol{V}_{1}}{\boldsymbol{V}_{2}} \\
\ln \left(\frac{\boldsymbol{T}_{2}}{\boldsymbol{T} 1}\right)^{\frac{c_{V}}{R}} & =\ln \frac{V_{1}}{V_{2}} \\
\left(\frac{\boldsymbol{T}_{2}}{\boldsymbol{T}_{1}}\right)^{\frac{C_{V}}{R}} & =\frac{V_{1}}{V_{2}} \\
\boldsymbol{T}_{2}^{\frac{c_{V}}{R}} \boldsymbol{V}_{2} & =\boldsymbol{T}_{1}^{\frac{c_{V}}{R}} \boldsymbol{V}_{1}
\end{aligned}
$$

for any two states ($\mathrm{T}_{1}, \mathrm{~V}_{1}, \mathrm{P}_{1}$) and ($\mathrm{T}_{2}, \mathrm{~V}_{2}, \mathrm{P}_{2}$) along an adiabatic reversible path
$\begin{aligned} & \text { know: } \mathrm{T}_{\text {initial }}, \mathrm{V}_{\text {initial }}, \mathrm{V}_{\text {final }} \rightarrow \text { calculate } \mathrm{T}_{\text {final }} \\ & \mathrm{T}_{\text {initial }}, \mathrm{V}_{\text {initial }}, \mathrm{T}_{\text {final }} \rightarrow \text { calculate } \mathrm{V}_{\text {final }}\end{aligned}$

Chemistry 163B Winter 2020 notes for lecture 4- First Law Calculations

(other) T vs P relationship for adiabatic reversible (HW\#15)
$\boldsymbol{T}_{2}^{\frac{\bar{c}_{V}}{R}} \boldsymbol{V}_{2}=\boldsymbol{T}_{1}^{\frac{\bar{c}_{V}}{R}} \boldsymbol{V}_{1}$
with
$\bar{C}_{P}=\bar{C}_{r}+R \quad$ and $\quad V=\frac{n R T}{P}$
$\boldsymbol{T}_{2}^{\frac{c_{v}}{R}} V_{2}=\boldsymbol{T}_{1}^{\frac{C_{V}}{R}} V_{1}$
$T_{2}^{\frac{c_{V}}{R}} \frac{n R T_{2}}{P_{2}}=T_{1}^{\frac{c_{v}}{R}} \frac{n R T_{1}}{P_{1}}$
$\boldsymbol{T}_{2}^{\frac{\boldsymbol{C}_{V}}{R}+1} P_{1}=\boldsymbol{T}_{1}^{\frac{\boldsymbol{C}_{V}}{R}+1} P_{2}$
$\boldsymbol{T}_{2}^{\frac{\boldsymbol{C}_{v}+R}{R}} P_{1}=\boldsymbol{T}_{1}^{\frac{\boldsymbol{C}_{v}+R}{R}} P_{2}$
$\begin{array}{ll}T_{2}^{\frac{C_{P}}{R}} P_{1}=T_{1}^{\frac{C_{P}}{R}} P_{2} & \text { for any two states }\left(\mathrm{T}_{1}, \mathrm{~V}_{1}, \mathrm{P}_{1}\right) \text { and }\left(\mathrm{T}_{2}, \mathrm{~V}_{2}, \mathrm{P}_{2}\right) \\ \frac{T_{2}^{\frac{C_{P}}{R}}}{P_{2}}=\frac{T_{1}^{\frac{C_{P}}{R}}}{P_{1}} & \begin{array}{l}\text { along an adiabatic reversible path }\end{array} \\ \text { know: } \mathrm{T}_{\text {initial }}, \mathrm{P}_{\text {initial }}, \mathrm{P}_{\text {final }} \rightarrow \text { calculate } \mathrm{T}_{\text {final }} & 13\end{array}$
summarizing (and HW2 \#15)

for any two states (T_{1}, V_{1}, P_{1}) and (T_{2}, V_{2}, P_{2}) along an adiabatic reversible path

adiabatic reversible expansion: $P_{1}=10 \mathrm{~atm} \rightarrow P_{2}=1 \mathrm{~atm}$ what's T_{f} ??

Example YEA!

$\mathrm{n}=1 \mathrm{~mol}$

$$
\begin{aligned}
\frac{T_{2}^{\frac{\bar{c}_{P}}{R}}}{P_{2}} & =\frac{T_{1}^{\frac{\bar{c}_{P}}{R}}}{P_{1}} \quad \frac{\bar{C}_{P}}{R}=\frac{5}{2} \\
T_{2} & =T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{R}{C_{p}}} \\
T_{2} & =T_{1}\left(\frac{1 \mathrm{~atm}}{10 \mathrm{~atm}}\right)^{\frac{2}{5}}=300 K \times(0.1)^{\frac{2}{5}} \\
T_{2} & =300 K \times(0.398)=119.4 K
\end{aligned}
$$

adiabatic reversible expansion: $P_{1}=10 \mathrm{~atm} \rightarrow P_{2}=1 \mathrm{~atm}$ what's V_{f} ??

ANOTHER EXAMPLE DOUBLE YEA! YEA!!

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{P}_{1}=10 \mathrm{~atm} \\
\mathrm{~T}_{1}=300 \mathrm{~K} \\
\mathrm{~V}_{1}=2.462 \ell
\end{array} \longrightarrow \begin{array}{l}
\mathrm{P}_{2}=1 \mathrm{~atm} \\
\mathrm{~V}_{2}=? ? ?
\end{array} \quad \text { use } \mathrm{P} \text { vs } \mathrm{V} \quad P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \\
& \mathrm{n}=1 \\
& \boldsymbol{P}_{2} \boldsymbol{V}_{2}^{\gamma}=\boldsymbol{P}_{1} \boldsymbol{V}_{1}^{\gamma} \quad \gamma=\frac{\overline{\boldsymbol{C}}_{P}}{\overline{\boldsymbol{C}}_{\boldsymbol{r}}}=\frac{5 / 2 \boldsymbol{R}}{3 / 2 \boldsymbol{R}}=\frac{5}{3} \\
& \boldsymbol{V}_{2}=\boldsymbol{V}_{1}\left(\frac{\boldsymbol{P}_{1}}{\boldsymbol{P}_{2}}\right)^{\frac{1}{r}}=\boldsymbol{V}_{1}\left(\frac{\boldsymbol{P}_{1}}{\boldsymbol{P}_{2}}\right)^{\frac{3}{5}} \\
& V_{2}=V_{1}\left(\frac{10 \mathrm{~atm}}{1 \mathrm{~atm}}\right)^{\frac{3}{5}}=2.46 \ell \times(10)^{\frac{3}{5}} \\
& V_{2}=2.462 \ell \times(3.98)=9.80 \ell
\end{aligned}
$$

16

Chemistry 163B Winter 2020 notes for lecture 4- First Law Calculations

