Chemistry 163B
Lecture 5 Winter 2020

Mathematics for Thermodynamics
Enthalpy
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for ideal gas AU=n C,, AT along any path
(even if V changes along path)

Derive Cp,=C,+nR for ideal gas
New state function enthalpy, H, AH-=qp

for ideal gas AH=n C; AT along any path
(even if P changes along path)

Use the mathematics of differentials to derive
relationships among thermodynamic variables



total differential ( : )

infinitesimal change in value of state function (well behaved function)

f(x,y) awell behaved function
of of
i df =| — | dx+|— | d
[total change in f]—> If (axj/ [53’1 ly
amount of | 4
change in x

changein f
per unit change in x
(along x direction)

changein f
per unit change in y
(along y direction)

amount of
change iny



http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/Winter14/handouts_W14.html
https://switkes.chemistry.ucsc.edu/teaching/CHEM163B/HANDOUTS/MathComments_163B.pdf
http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/Winter14/handouts_W14.html
https://switkes.chemistry.ucsc.edu/teaching/CHEM163B/HANDOUTS/MathComments_163B.pdf
http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/Winter14/handouts_W14.html

differential of product (product rule)

d(xy) = ydx+ xdy



example of implication of total differentials

First Law

du,, =dq,, +dw, +dn  (n=number of moles; dn=0 for closed system)

U is state function = dU_ is exact differential

for dn =0 (closed system)

st 1)
dU(T, P).l an dT + ( de = dq,, taw,,

.( Gorst 1)
dU(T, V) = 2_;{ dT + (g_(;j dV = d-qsys T d-WSyS



“divide through by ??” | math handout item #6 |

oU oU

how to get (G_U 277 %

a V szome other variable “

“divide through by dV holding X (something else) constant “

2),-2) (22 (2)

later special simplification if X=P or x=T



https://switkes.chemistry.ucsc.edu/teaching/CHEM163B/HANDOUTS/MathComments_163B.pdf

two relationships for ideal gasses: we looked ahead (lect 4 slide #5)

-

\_

« for any substance
dU, =dq, =nCy dT and AU, =_[n Cv dT for a constant volume process

» but for an ideal gas
dU = nEVdT and AU = nEVAT for ANY path (not only constant V process)

~N

/

( » forideal gas \

C,=C,+R
 monatomic ideal gas

—~ 3 —~ 5

CV:ER CP:ER

\_ /




ideal gas AU, .= =nC,AT for ANY path (not only constant V process)

é _ _
dU, =dq, =nCyvdT and AU, =_[n Cv dT for a constant volume process
: =nC an . =nC or ath (not only constant rocess
dUtdeal gas CVdT d AI]tdeal gas CVAT f ANY p h ( ly V p )
\,
(general, w_, . =0, dn=0) ideal gas
U
U U dU(T,V)=nCy dT+(ZV) dv
dU(T,V)=(—] dT + ( ) dv d
or ), ov ), but |
dU =dq - PdV first law oU g rompomic
oU — 1 =0 E= EnRT doesn't depend onV
dUV = (a_T) dT = qu =n E‘V dT oV T (kinetic energy only T)
bt L B
— | =nCy _
oT % U=n CV AT
dU =nCy dT + oU ) AV even if V not constant (i.e. any path)
ov ),
AL Tfé r)dT + ouY ., for AU, y., a5 @lONG genelial path where
B o const V) an const T) var
”.T( v I ) both T ( v) and V ( T) vary
- AU =nCy AT AU =nada

no effect on U



nCp=

In general

for only P-V work and closed system (@w,,,. =0, dn=0)
dU =dq— P_dV for infintesimal change P, =P,, = P
dg=dU + PdV .
_ (ag) (8U v\ (U =
.. nCp=|—| =|— | +P|— | =| — | =nC
divide by dT, V const v deV (8T JV (8T jV (GT jV v
~
() 22
divide by dT, Pconst "“r =| 77| J| S~ P
ivide by cons dT ), oT ) or ),
express dU(T,V) dU(T,V)= G_Uj dT + au dv oU
ol ), ov ), now to get T :
divide by dT, P const (8_Uj —nCJ(a—Tja: 8_U (G_Vj ] T ’
yal, oT ), "\ ar e ) \er ), in terms of T,V
(an 2 (aU] (an \
— | |=|nC, +
oT ), ov ).\ oT ),

Cy+

finally l~ nCr =

|

au
oV

JAERG

oV

oT

)

C (@ nCy E(@j
"“\dr), Cp vsC,(E&R,,p.76) dT ),
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let’s interpret C, vs C, (very general relationship) ~E&R 3.37

_ _ (oU) (oV oV
recapitualting nC,=nty+ Wl (a_T P+P(8_ij

nC, =nC, + ou L p v volume change )
ov ). orT ), per T change of 1

f |

g energy to energy to ‘ [ restore
raise T 1° raise T 1° energy
const P constV ] ( potential energy | lost as

(vol changes) as molecules P-V work

\ J ‘separate’ per unit per unit
\volume change Y volume

\ change J

« raising T 1° K requires increasing kinetic (and internal) energy of molecules
- at constant V, all +q increases kinetic (and internal) energy of molecules
» where does the heat energy go when we raise T at constant P ??




Cr vs C, for ideal gas

n5P=n5V+ (6—Uj + P (a—Vj
oV ), oT ),

for ideal gas
nRT
P

V=

Energy, U 1s function of ONLY T, i.e. U=U(T)

SO.

nC,=nC, +[O+P]—

o) _mR
oT P
oU

- :0
ov ),

P




experimental C, and C, for selected gasses: how ‘good’ is C,=C,+nR ?

R=8.31 J mol-' K-

ideal gas
Monatomic : ; E ; CP C =R
Monatomic  Ne 127 20.8 8.12 1.64 —~ 3
PRk monatomic C,, = 5
Monatomic  Ar 12.5 20.8 .30 1.67
diat C =2
Diatomic  H, 20.4 28.8 8.45 1.41 tatomic Cy = 9
Diatomic O, 21.0 20.3 8.32 1.40 Jmol' K™
Diatomic N, 20.8 29.1 8.32 1.40 3 R=12.47
Triatomic ~ H,0 27.0 35.4 8.35 1.31 5
—R=20.78
Polyatomic  CH, 27.1 35.4 8.36 1.31 2
7 :
ER =29.10 §

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2 1



1st Law recapitulation

U = internal energy

du,, =dq,, +aw, +dn, (n=number of moles; dn=0 for closed system)

dU_ . =—-dU (energy conserved )

sys surr

dU is exact differential

U is a state function completely general

for only P-V work and closed system (dn=0)
dU =dqg—-P_dV

ext

» Constant volume process dU,= thIV AU=¢q,,

- Adiabatic process du=dw AU=w



enthalpy: q for process at constant Pressure

H=U+P, .,V  (definition of enthalpy, H)

since U is state function; and since P, V
are state variables, H is also a

STATE FUNCTION completely general

why a new state function you might ask??

dU, =dq, ; AU, =gq, heat at constant volume

but most reactions and many physical
processes are carried out at constant P

desire state function for qp, heat at constant pressure

14



enthaply: H, a state function for heat transfer at constant pressure

H=U+PYV

dH =dU + PdV +VdP (P, = P, for infinitesimal change dP)

dH =dq— PdV +dw, , + PdV +VdP

dH =dq +VdP + dw
and at P=constantand aw_ =0

dH , =dq,

AH, =q, as advertised !!

other

AH, =q, atconstP and now

other

AH , >0 endothermic (heat gained by system)

AH , <0 exothermic (heat lost by system)
15



AH ideal gas

C, independent
of T

AHP =q,= anPdT znprT (general,forw . =0,dn =0)

but for ideal gas

H=U+PV =U+nRT
dH =dU +nRdT (general for ideal gas)
dH = nEvdT +nRdT (general for ideal gas, evenV not const)
dH = n(C, + R)dT
dH =nC,dT IDEAL GAS ANYTIME,
EVEN IF P NOT CONSTANT

=0, dn=0)

AH=nC »AT 1deal gas general (for w

other




manipulating thermodynamic functions: fun and games

GOALS:

« Evaluate changes in thermodynamic functions
In terms of selective constraints

(o)
e.9- (7 )y,

« Transform expressions for changes in
thermodynamic functions (e.g. AU, AH, etc) into
expressions that can be evaluated in terms of
P,V, T or other directly measurable quantities.

17



manipulating thermodynamic functions: fun and games

for example:
HW#2

12. Derive the following for any closed system,
with only P-V work:

oU\ ( oV

C,=—|—||=
ov ).\ eT ),

18



small ‘cheat’ via ‘look ahead’ B

many of the results in E&R ch 3 use
the below [yet] ‘unproven’ result;
that we will derive later (using 2"? Law)

class should use result in HW2 #13*

4 )
OEER
ov ). ~\eoT),

E&R, eqn.3.15 [eqn3.19]

. -

19



total differential for U(T,V,n) and H(T,P,n)

ulr,V,n,n,,...n,)

orT ), , v ).,

H(T,P,n ,n,,..,n,)
orT ), oP ), ,

for now closed system all dn. =0

20



U(T,V): some manipulations and relationships (closed system)

du(T,V)= ou dT+(6—U) dV  closed system, dw_, =0
or ), ov ).

dU(T,V)=dq—PdV

definition of C,; (a_Uj = (@J =C, =nC,
oT ), \dT ),

‘divide dU by dV, ov) _(dq) _,
holding T constant’: ov ), \dV ),

hmmm (—j =T (—J see you later
av ). \or),

but here we can also ov\ _,(oP) _p
use our ‘look ahead’: ov ), oT ),

to — P
get |dU(T,V)=nC,dT + {T (S_Tj — P} dV eqn3.16,p 70 E&R, [eqn320p51],,
V

C,,P,T,V and dervivatives are all experimentally accessible

21




H(T,P): some manipulations and relationships (closed system)

(6H/oT),=C,

(8H / 8P)T =?? in terms of P,V,T and derivatives

start:

‘divide dH by dP,
holding T constant’:

chain rule:

using

()]
ov ), \eor),

almost fini !/

dH (T,P)= MY ar+ %) ap
oT ), .

oP
and

dH =dU + PdV +VdP closed system, dw_ =0

(6H\ |(oU ) (GV) (ap)
— | = =||+P +V
\OP ), |\ oP ), r r

oP op

(a_U\ (aU\ (aV)
\aP)T \aV/T\aP T

( A ( \ ([

\GP/T \GV)T\GP T 5P T 5P T 8V T

( ) ( \

o) (2 [o(2) -»

\oP ), \oP),| v

oT

+P]+V

(

aﬂ) _ T(aV) (5” ) +V  eqn 3.40 E&R,, [3.44]
aP ) aP ] 6T ) 3rd

22



so finishing up for dU and dH:

. . OH
from previous slide (—)
oP ),

=T(6V
OP

)Gl

similar to HW#1

V(T,P) dV = (

dT +
/p

(6V dP(
oP ),

)
or ),

(aV\
oT )

(6T) +(6V) (6P
or ), \oP ). \or

)

prob 1d-e o:(aV“ (W) (6_1’)
6T)P aP T aT Vv
[aVJ [aPJ } [ J
OP r oT v p
.
(aﬂ —V - 1(—V) eqn 3.40 E&R,,, [3.44]
GP)T aT ) 3rd

dU(T,V) = nEVdT+ T(a—j —P:l dV eqn3.16,p 70 E&R, [eqn320p51],,
V

dH(T,P)=nC,dT +

oT

o

EV, C »» P, T,V and dervivatives are all experimentally accessible

oV
oT

)

23



in section derive equation following equation

nEV:nEP+ (aﬂJ -V (8—1))
oP ), oT ),

start with
dU =dH — PdV —VdP
divide by dT with V constant
and then boogie along as we just did!!

24



First Law: ideal gas calculations

relationships that apply to ideal gasses for all conditions with w_, =0
and constant composition (some also apply more generally):
AU=g+w w,, =—|P_dV PV =nRT
qunJ‘EVdT qun.EPdT -
' C,=C, +R
? = ? =
=nC, AT =nC,AT
H=U+PV AUWW conditions nCVAT A[{any conditions nCPAT
monatomic ideal gas C ZER C, :gR
V

? only when C, or C, doesn’'t depend on T'!




Lecture 5: GOALS

v' Some new math ‘tricks’

v for ideal gas AU=n E\, AT along any path
(even if V changes along path)

v' Derive Cp=C,+nR for ideal gas
v New state function enthalpy, H, AH-=qp

v’ for ideal gas AH=n EP AT along any path
(even if P changes along path)

v' Use the mathematics of differentials to derive

relationships among thermodynamic variables
26



END OF LECTURE 5
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why is C, larger for diatomic than for monatomic gas ?

monatomic C, = ER

diatomic C, = %

non — linear polyatomic EV >3R

translational and rotational modes

each contribute % R to (_JV

mayp

activated at high T

“—> . >

QP9

symmetric stretching

0 @

asymmetric stretching
vibrational motion

.‘ t ‘
¥
bending

“—

http://images.flatworldknowledge.com/

rotational motion translational motion

k-fig18 013.jpg

heat energy rotation | vibration
goes into translation active at 298K
(total)
— | monatomic 3 0 0 (0)
—p| diatomic 3 2 O_(1)
—,| polyatomic 3 3 >0 (3N-6)

https://www.slideserve.com/

marlee/chapter-2-the-first-

law-the-concepts

28
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