Chemistry 163B

Lecture 5 Winter 2020

Mathematics for Thermodynamics Enthalpy

Challenged Penmanship Notes
－Some new math＇tricks’
－for ideal gas $\Delta \mathrm{U}=\mathrm{n} \overline{\mathrm{C}_{\mathrm{V}}} \Delta \mathrm{T}$ along any path （even if V changes along path）
－Derive $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}+\mathrm{nR}$ for ideal gas
－New state function enthalpy， $\mathrm{H}, \Delta \mathrm{H}_{\mathrm{P}}=\mathrm{q}_{\mathrm{P}}$
－for ideal gas $\Delta \mathrm{H}=\mathrm{n} \overline{\mathrm{C}_{\mathrm{P}}} \Delta \mathrm{T}$ along any path （even if P changes along path）
－Use the mathematics of differentials to derive relationships among thermodynamic variables

total differential (math handout item \#3; E\&R ch. 3)

infinitesimal change in value of state function (well behaved function)

$$
f(x, y) \text { a well behaved function }
$$

$d(x y)=y d x+x d y$

example of implication of total differentials

First Law
$d U_{s y s}=d q_{s y s}+đ w_{s y s}+d n_{s y s}(\mathrm{n}=$ number of moles; $\mathrm{dn}=0$ for closed system $)$

U is state function $\Rightarrow d U_{s y s}$ is exact differential

$$
\begin{gathered}
\text { for } d n=0 \text { (closed system) } \\
d U(T, P) \stackrel{\text { math }}{=}\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P \stackrel{\text { (irst law }}{=} d q_{\text {sys }}+\pi w_{s y s} \\
\text { OR } \\
d U(T, V) \stackrel{\text { math }}{=}\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \stackrel{\text { tirst law }}{=} \pi q_{s y s}+\pi w_{s y s}
\end{gathered}
$$

$$
d U(T, P)=\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P
$$

how to get $\left(\frac{\partial U}{\partial V}\right)_{X=\text { some other variable }}$???
"divide through by dV holding X (something else) constant "

$$
\left(\frac{\partial U}{\partial V}\right)_{\bigotimes}=\left(\frac{\partial U}{\partial T}\right)_{P}\left(\underline{\frac{\partial T}{\partial V}}\right)_{Q}+\left(\frac{\partial U}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial V}\right)_{Q}
$$

later special simplification if $\mathrm{X}=\mathrm{P}$ or $\mathrm{x}=\mathrm{T}$

two relationships for ideal gasses: we looked ahead (lect 4 slide \#5)

- for any substance
$d U_{V}=\boldsymbol{d} q_{V}=n \bar{C}_{V} d \boldsymbol{T}$ and $\Delta \mathrm{U}_{V}=\int n \overline{\boldsymbol{C}}_{V} d \boldsymbol{T}$ for a constant volume process
- but for an ideal gas
$d U=n \bar{C}_{V} d T$ and $\Delta U=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process)
[other parts of path, changes of P and V with constant T, give zero contribution to ΔU]
- for ideal gas

$$
\bar{C}_{P}=\bar{C}_{V}+R
$$

- monatomic ideal gas

$$
\bar{C}_{V}=\frac{3}{2} R \quad \bar{C}_{P}=\frac{5}{2} R
$$

[simple proof coming soon]

ideal gas $\Delta U_{\text {ideal gas }}=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process)

$$
\begin{gathered}
d U_{V}=\pi q_{V}=n \bar{C}_{V} d T \text { and } \Delta \mathrm{U}_{V}=\int n \bar{C}_{V} d T \quad \text { for a constant volume process } \\
d U_{\text {ideal gas }}=n \bar{C}_{V} d T \text { and } \Delta U_{\text {ideal gas }}=n \bar{C}_{V} \Delta T \text { for ANY path (not only constant } V \text { process) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (general, } \mathrm{w}_{\text {other }}=0, \mathrm{dn}=0 \text {) } \\
& d U(T, V)=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
& d U=\bar{d} q-P d V \text { first law } \\
& \underline{\underline{d}} \underline{V}_{V}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V} d \boldsymbol{T}=\boldsymbol{d} q_{V}=n \overline{\boldsymbol{C}}_{\boldsymbol{V}} d \boldsymbol{T} \\
& \left(\frac{\partial U}{\partial \boldsymbol{T}}\right)_{V} \equiv n \overline{\boldsymbol{C}}_{V} \\
& d U=n \bar{C}_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
& \Delta U=n \int_{T_{i}}^{T_{f}} \bar{C}_{V}(T) d T+\int_{V_{i}}^{V_{f}}\left(\frac{\partial U}{\partial V}\right)_{T} d V
\end{aligned}
$$

$$
n \bar{C}_{P} \equiv\left(\frac{d q}{d T}\right)_{P} \quad C_{P} \quad \text { vs } C_{V}\left(E \& \boldsymbol{R}_{4 t h} \operatorname{p.76)} \quad n \bar{C}_{V} \equiv\left(\frac{d q}{d T}\right)_{V}\right.
$$

In general

for only P-V work and closed system ($d w_{\text {other }}=0, \mathrm{dn}=0$)
$d U=đ q-P_{\text {ext }} d V \quad$ for infintesimal change $P_{\text {ext }}=P_{\text {int }}=P$

$$
\overparen{d q}=d U+P d V
$$

divide by dT, V const $n \bar{C}_{V} \equiv\left(\frac{\Delta q}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}+P\left(\frac{\partial V}{\partial T}\right)_{V}^{=0}=\left(\frac{\partial U}{\partial T}\right)_{V}=n \bar{C}_{V}$
divide by dT, P const $n \bar{C}_{p} \equiv\left(\frac{d q}{d T}\right)_{P}=\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}$
express $d U(T, V)$
divide by dT, P const

$$
\begin{array}{ll}
d U(T, V)=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V & \text { now to get }\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P}: \\
\left(\frac{\partial U}{\partial T}\right)_{P}=n \vec{C}_{V}\left(\frac{\partial T}{\partial T}\right)_{P}=\boldsymbol{\mathcal { V }}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} & \text { in terms of } \boldsymbol{T}, \boldsymbol{V} \\
\left(\frac{\partial U}{\partial T}\right)_{P}=n \bar{C}_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} &
\end{array}
$$

finally !!! $\quad n \bar{C}_{p}=\bar{C}_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}$

let's interpret C_{P} vs C_{v} (very general relationship) ~E\&R 3.37

recapitualting $\quad \boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}$

- raising $\mathrm{T} 1^{\circ} \mathrm{K}$ requires increasing kinetic (and internal) energy of molecules
- at constant V, all +q increases kinetic (and internal) energy of molecules
- where does the heat energy go when we raise T at constant P ??

C_{P} vs C_{V} for ideal gas

$$
\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}+\left[\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}+\boldsymbol{P}\right]\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}
$$

for ideal gas

$$
V=\frac{n R T}{P}
$$

Energy, U is function of ONLY T, i.e. $\mathrm{U}=\mathrm{U}(\mathrm{T})$
SO: $\quad\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{\boldsymbol{n} \boldsymbol{R}}{\boldsymbol{P}}$
$\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=0$
$\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}+[0+\boldsymbol{P}] \frac{\boldsymbol{n} \boldsymbol{R}}{\boldsymbol{P}}$
$n \bar{C}_{P}=n \bar{C}_{V}+\boldsymbol{n R}$
$\bar{C}_{P}=\bar{C}_{V}+\boldsymbol{R} \quad$ for ideal gas
experimental C_{V} and C_{P} for selected gasses: how 'good' is $C_{P}=C_{V}+n R$?

Natme of 1903	Cr 2	$\left(\begin{array}{c} c \\ \left(\text { mot }^{-1} \mathrm{E}^{-1}\right) \end{array}\right.$	$(\mathrm{C}$	$\begin{gathered} C-C \\ \left(1 \mathrm{~mol}^{-1} \mathrm{I}^{-1}\right) \end{gathered}$	γ	$\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Monatomic	He	12.5	20.8	8.30	1.66	$\overline{\boldsymbol{C}}_{P}-\overline{\boldsymbol{C}}_{V}=\boldsymbol{R}$
Monatomic	Ne	12.7	20.8	8.12	1.64	monatomic $\bar{C}_{V}=\frac{3}{2} \boldsymbol{R}$
Monatomic	Ar	12.5	20.8	8.30	1.67	
Diatomic	H_{2}	20.4	28.8	8.45	1.41	$\text { diatomic } \bar{C}_{V} \cong \frac{3}{2} R$
Diatomic	O_{2}	21.0	29.3	8.32	1.40	$\boldsymbol{J} \boldsymbol{m o l}{ }^{-1} \boldsymbol{K}^{-1}$
Diatomic	N_{2}	20.8	29.1	8.32	1.40	$\frac{3}{2} \boldsymbol{R}=12.47$
Triatomic	$\mathrm{H}_{2} \mathrm{O}$	27.0	35.4	8.35	1.31	$\underline{5} \boldsymbol{R}=20.78$
Polyatomic	CH_{4}	27.1	35.4	8.36	1.31	$\frac{-2}{2}=20.78$
						$\frac{7}{2} \boldsymbol{R}=29.10$

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2

```
U \equivinternal energy
dU sys}=|\mp@subsup{q}{sys}{}+d\mp@subsup{w}{sys}{}+d\mp@subsup{n}{sys}{}(\textrm{n}=\mathrm{ number of moles; dn=0 for closed system)
dU sys
dU is exact differential
U is a state function completely general
```

for only P-V work and closed system ($\mathrm{dn}=0$)

$$
d U=\vec{d} q-P_{e x t} d V
$$

- Constant volume process $\mathrm{dU}_{\mathrm{v}}=\pi q_{V} \quad \Delta \mathrm{U}_{\mathrm{v}}=q_{V}$
- Adiabatic process $\quad \mathrm{dU}=\boldsymbol{d} w \quad \Delta \mathrm{U}=w$

$$
\mathrm{H} \equiv \mathrm{U}+\mathrm{P}_{\mathrm{int}} \mathrm{~V} \quad \text { (definition of enthalpy, } \mathrm{H} \text {) }
$$

since U is state function; and since P, V are state variables, H is also a

STATE FUNCTION

why a new state function you might ask??
$d U_{V}=\vec{d} q_{V} \quad ; \quad \Delta U_{V}=q_{V} \quad$ heat at constant volume
but most reactions and many physical processes are carried out at constant P
desire state function for $\mathbf{q}_{\mathbf{p}}$, heat at constant pressure

$$
\begin{aligned}
& \boldsymbol{H} \equiv \boldsymbol{U}+\boldsymbol{P}_{\mathrm{imt}} \boldsymbol{V} \\
& \boldsymbol{d} \boldsymbol{H}=\underline{\boldsymbol{d} \boldsymbol{U}}+\boldsymbol{P} \boldsymbol{d} \boldsymbol{V}+\boldsymbol{V} \boldsymbol{d} \boldsymbol{P} \quad\left(\boldsymbol{P}_{\mathrm{pot}}=\boldsymbol{P}_{\text {ote }} \text { for infinitesimal change } d P\right) \\
& d H=\underline{\boldsymbol{d}} q-P d V+\boldsymbol{\pi} w_{\text {other }}+P d V+V d P \\
& \boldsymbol{d} \boldsymbol{H}=\boldsymbol{d} \boldsymbol{q}+\boldsymbol{V} \boldsymbol{d} \boldsymbol{P}+\boldsymbol{\pi} \boldsymbol{w}_{\text {other }} \\
& \text { and at } \mathrm{P}=\text { constant and } \quad \boldsymbol{d} \boldsymbol{w}_{\text {other }}=0 \\
& \boldsymbol{d} \boldsymbol{H}_{P}=\boldsymbol{J} \boldsymbol{q}_{P} \\
& \Delta H_{P}=q_{P} \text { as advertised !! }
\end{aligned}
$$

$\Delta H_{P}=q_{P}$ at const P and no $w_{\text {other }}$
$\Delta H_{P}>0$ endothermic (heat gained by system)
$\Delta H_{P}<0$ exothermic (heat lost by system)

4H ideal gas

$$
\Delta \boldsymbol{H}_{\boldsymbol{P}}=\boldsymbol{q}_{\boldsymbol{p}}=\int \boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}} \boldsymbol{d} \boldsymbol{T} \approx \boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}} \Delta \boldsymbol{T} \text { (general, for } w_{\text {other }}=0, d n=0 \text {) }
$$

but for ideal gas

$$
\begin{aligned}
& \boldsymbol{H} \equiv \boldsymbol{U}+\boldsymbol{P} \boldsymbol{V}=\boldsymbol{U}+\boldsymbol{n} \boldsymbol{R} \boldsymbol{T} \\
& \boldsymbol{d H}=\boldsymbol{d} \boldsymbol{U}+\boldsymbol{n} \boldsymbol{R} \boldsymbol{d} \boldsymbol{T} \quad \text { (general for ideal gas) } \\
& \boldsymbol{d H}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{v}} \boldsymbol{d} \boldsymbol{T}+\boldsymbol{n} \boldsymbol{R} \boldsymbol{d} \boldsymbol{T} \quad \text { (general for ideal gas, even } V \text { not const) } \\
& \boldsymbol{d H}=\boldsymbol{n}\left(\overline{\boldsymbol{C}}_{\boldsymbol{v}}+\boldsymbol{R}\right) \boldsymbol{d} \boldsymbol{T} \boldsymbol{T} \\
& \boldsymbol{d H}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}} \boldsymbol{d} \boldsymbol{T} \quad \text { IDEAL GAS ANYTIME, } \\
& \quad \text { EVEN IF P NOT CONSTANT }
\end{aligned}
$$

$$
\Delta \mathrm{H}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}} \Delta \boldsymbol{T} \quad \text { ideal gas general (for } \mathrm{W}_{\text {other }}=0, \mathrm{dn}=0 \text {) }
$$

GoALS:

- Evaluate changes in thermodynamic functions in terms of selective constraints
e.g. $\left(\frac{\partial V}{\partial T}\right)_{U}$
- Transform expressions for changes in thermodynamic functions (e.g. $\Delta \mathrm{U}, \Delta \mathrm{H}$, etc) into expressions that can be evaluated in terms of $\mathrm{P}, \mathrm{V}, \mathrm{T}$ or other directly measurable quantities.
for example:
HW\#2

12. Derive the following for any closed system, with only P-V work:

$$
C_{V}=-\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{U}
$$

many of the results in E\&R ch 3 use the below [yet] 'unproven' result; that we will derive later (using $2^{\text {nd }}$ Law)
class should use result in HW2 \#13*

$$
\begin{aligned}
& \left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}}=\boldsymbol{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}-\boldsymbol{P} \\
& \boldsymbol{E} \& \boldsymbol{R}_{4 t h} \text { eqn. } 3.15 \quad[\text { eqn.3.19] }]_{2 n}
\end{aligned}
$$

total differential for $U(T, V, n)$ and $H(T, P, n)$

$$
\begin{aligned}
& U\left(T, V, n_{1}, n_{2}, \ldots, n_{N}\right) \\
& d U=\left(\frac{\partial U}{\partial T}\right)_{V, n} d T+\left(\frac{\partial U}{\partial V}\right)_{T, n} d V+\sum_{i=1}^{N}\left(\frac{\partial U}{\partial n_{i}}\right)_{T, V, n_{j} \neq n_{i}} d n_{i}
\end{aligned}
$$

$\boldsymbol{H}\left(T, P, n_{1}, n_{2}, \ldots, n_{N}\right)$
$\boldsymbol{d H}=\left(\frac{\partial \boldsymbol{H}}{\partial T}\right)_{P, n} \boldsymbol{d T}+\left(\frac{\partial \boldsymbol{H}}{\partial P}\right)_{T, n} \boldsymbol{d P}+\sum_{i=2}^{N}\left(\frac{\partial H}{\partial n_{i}}\right)_{T, P, n_{j} \neq n_{i}} d n_{i}$
for now closed system all $\mathrm{dn}_{\mathrm{i}}=0$

$U(T, V)$: some manipulations and relationships (closed system)

$$
\begin{aligned}
& d \boldsymbol{U}(\boldsymbol{T}, \boldsymbol{V})=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V} d \boldsymbol{T}+\left(\frac{\partial \boldsymbol{U}}{\partial V}\right)_{T} d \boldsymbol{V} \quad \text { closed system, } \bar{d} w_{\text {other }}=0 \\
& \boldsymbol{d} \boldsymbol{U}(\boldsymbol{T}, \boldsymbol{V})=\boldsymbol{t} \boldsymbol{q}-\boldsymbol{P d V}
\end{aligned}
$$

definition of $\mathrm{C}_{\mathrm{V}}: \quad\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}\right)_{V}=\boldsymbol{C}_{V}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}$

$$
\left(\frac{\partial \boldsymbol{U}}{\partial V}\right)_{T}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} V}\right)_{T}-\boldsymbol{P}
$$

$$
\operatorname{hmmm}\left(\frac{d \boldsymbol{d}}{\boldsymbol{d} V}\right)_{T} \stackrel{? ?}{=} \boldsymbol{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V} \text { see you later }
$$

to get

$$
d U(T, V)=n \bar{C}_{V} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V \quad \text { eqn } 3.16, \mathrm{p} 70 E \& R_{4 / k}[\operatorname{eqn} 3.20 \mathrm{p} 51]_{3 r d}
$$

$$
\bar{C}_{V}, P, T, V \text { and dervivatives are all experimentally accessible }
$$

H(T,P): some manipulations and relationships (closed system)

$(\partial \boldsymbol{H} / \partial \boldsymbol{T})_{\boldsymbol{P}}=\boldsymbol{C}_{\boldsymbol{P}} \quad(\partial \boldsymbol{H} / \partial \boldsymbol{P})_{\boldsymbol{T}}=\boldsymbol{?} \boldsymbol{?}$ in terms of $\mathrm{P}, \mathrm{V}, \mathrm{T}$ and derivatives

$$
d H(T, P)=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P
$$

$$
\boldsymbol{d H}=\boldsymbol{d} \boldsymbol{U}+\boldsymbol{P d V}+\boldsymbol{V d P} \quad \text { closed system, } \boldsymbol{d}_{\text {wharer }}=0
$$

$\begin{gathered}\text { 'divide dH by dP, } \\ \text { holding T constant': }\end{gathered}\left(\frac{\partial H}{\partial P}\right)_{T}=\left(\frac{\partial U}{\partial P}\right)_{T}+P\left(\frac{\partial V}{\partial P}\right)_{T}+V\left(\frac{\partial P}{\partial P}\right)_{T}$
chain rule: $\left(\frac{\partial U}{\partial \boldsymbol{P}}\right)_{T}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial \boldsymbol{P}}\right)_{T}$
$\left(\frac{\partial H}{\partial \boldsymbol{P}}\right)_{T}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial \boldsymbol{P}}\right)_{T}+\boldsymbol{P}\left(\frac{\partial V}{\partial \boldsymbol{P}}\right)_{T}+\boldsymbol{V}=\left(\frac{\partial V}{\partial \boldsymbol{P}}\right)_{T}\left(\left(\frac{\partial \boldsymbol{U}}{\partial V}\right)_{T}+\boldsymbol{P}\right)+\boldsymbol{V}$

using
$\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P$

alcmost fini !! $\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}=\boldsymbol{T}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{P}}\right)_{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}+\boldsymbol{V} \quad$ eqn $3.40{\mathrm{E} \& \mathrm{R}_{4 t h}[3.44]_{3 d}}$

so finishing up for $d U$ and $d H$:

from previous s prob 1d-e

$$
\begin{aligned}
& \left(\frac{\partial H}{\partial \boldsymbol{P}}\right)_{T}=T\left(\frac{\partial V}{\partial \boldsymbol{P}}\right)_{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}+\boldsymbol{V} \\
& V(T, P) d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P\left(\frac{\partial V}{\partial T}\right)_{V} \\
& =\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial T}\right)_{V}+\left(\frac{\partial V}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{V} \\
& 0=\left(\frac{\partial V}{\partial T}\right)_{P}+\left(\frac{\partial V}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{V} \\
& \left(\frac{\partial V}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{V}=-\left(\frac{\partial V}{\partial T}\right)_{P} \\
& \left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{\boldsymbol{T}}=\boldsymbol{V}-\boldsymbol{T}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P} \text { eqn } 3.40{\mathrm{E} \& \mathrm{R}_{4 / 4}[3.44]_{s t}, ~}_{\text {d }} \\
& \boldsymbol{d} \boldsymbol{U}(\boldsymbol{T}, \boldsymbol{V})=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}} \boldsymbol{d} \boldsymbol{T}+\left[\boldsymbol{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}-\boldsymbol{P}\right] \boldsymbol{d} \boldsymbol{V} \quad \text { eqn 3.16, } \mathrm{p} 70 \mathrm{ERR}_{44 /}[\operatorname{leqn} 3.20 \mathrm{p} 51]_{3 d t}
\end{aligned}
$$

$\bar{C}_{V}, \bar{C}_{P}, P, T, V$ and dervivatives are all experimentally accessible

$$
\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{P}+\left[\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}-\boldsymbol{V}\right]\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}
$$

start with

$$
d U=d H-P d V-V d P
$$

divide by $d T$ with V constant and then boogie along as we just did!!

First Law: ideal gas calculations

relationships that apply to ideal gasses for all conditions with $w_{\text {other }}=0$ and constant composition (some also apply more generally):

$\Delta U=q+w$	$w_{P V}=-\int P_{e x t} d V$	$P V=n R T$
$q_{V}=n \int \bar{C}_{V} d T$	$q_{P}=n \int \bar{C}_{P} d T$	$\bar{C}_{P}=\bar{C}_{\mathrm{V}}+R$
$\stackrel{?}{=} n \bar{C}_{V} \Delta T$	$\stackrel{?}{=} n \bar{C}_{P} \Delta T$	
$H \equiv U+P V$	$\Delta U_{\text {any conditions }}=n \bar{C}_{V} \Delta T$	$\Delta H_{\text {any conditions }}=n \bar{C}_{P} \Delta T$
monatomic ideal gas	$\bar{C}_{V}=\frac{3}{2} R$	$\bar{C}_{P}=\frac{5}{2} R$

? only when C_{v} or C_{p} doesn't depend on T !

Lecture 5: GOALS

\checkmark Some new math 'tricks'
\checkmark for ideal gas $\Delta \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \Delta \mathrm{T}$ along any path (even if V changes along path)
\checkmark Derive $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}+\mathrm{nR}$ for ideal gas
\checkmark New state function enthalpy, $H, \Delta H_{P}=q_{P}$
\checkmark for ideal gas $\Delta \mathrm{H}=\mathrm{n} \overline{\mathrm{C}_{\mathrm{p}}} \Delta \mathrm{T}$ along any path (even if P changes along path)
\checkmark Use the mathematics of differentials to derive relationships among thermodynamic variables

END OF LECTURE 5

why is C_{V} larger for diatomic than for monatomic gas?

monatomic $\overline{\boldsymbol{C}}_{\boldsymbol{V}}=\frac{3}{2} \boldsymbol{R}$ diatomic $\overline{\boldsymbol{C}}_{V} \cong \frac{5}{2} \boldsymbol{R}$ non-linear polyatomic $\bar{C}_{V}>3 \boldsymbol{R}$ translational and rotational modes each contribute $\frac{1}{2} \mathbf{R}$ to $\overline{\mathbf{C}}_{V}$
activated at high T

symmetric stretching
asymmetric stretching vibrational motion
http://images.flatworldknowledge.com/
averillfwk/averillfwk-fig18 013.jpg

heat energy goes into	translation	rotation	vibration active at 298K (total)
monatomic	3	0	$0(0)$
	diatomic	3	2
polyatomic	$\underline{0}$	$\underline{3})$	

https://www.slideserve.com/ marlee/chapter-2-the-first-law-the-concepts

