Chemistry 163B

Lecture 5 Winter 2020

Mathematics for Thermodynamics Enthalpy

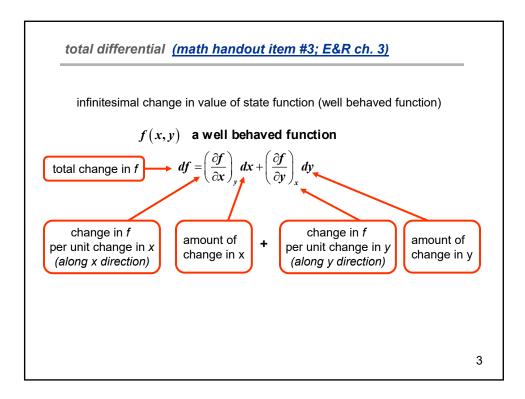
Challenged Penmanship Notes

1

Lecture 5: GOALS

· Some new math 'tricks'

- for ideal gas ΔU=n C_V ΔT along any path (even if V changes along path)
- Derive C_P=C_V+nR for ideal gas
- New state function enthalpy, H, $\Delta H_P = q_P$
- for ideal gas ∆H=n C_P ∆T along any path (even if P changes along path)
- Use the mathematics of differentials to derive relationships among thermodynamic variables



differential of product (product rule)

$$d(xy) = ydx + xdy$$

example of implication of total differentials

First Law

 $dU_{sys} = dq_{sys} + dw_{sys} + dn_{sys}$ (n=number of moles; dn=0 for closed system)

U is state function $\Rightarrow dU_{\mbox{\tiny sys}}$ is exact differential

for dn = 0 (closed system)

$$dU(\underline{T,P}) = \left(\frac{\partial U}{\partial T}\right)_{P} \underline{dT} + \left(\frac{\partial U}{\partial P}\right)_{T} \underline{dP} = dq_{sys} + dw_{sys}$$

$$dU(T,V) = \begin{pmatrix} \frac{\partial U}{\partial T} \\ \frac{\partial U}{\partial T} \end{pmatrix}_{V} dT + \begin{pmatrix} \frac{\partial U}{\partial V} \\ \frac{\partial U}{\partial V} \end{pmatrix}_{T} dV = dq_{sys} + dq_{sys}$$

5

"divide through by ??"

math handout item <u>#6</u>

$$dU(T,P) = \left(\frac{\partial U}{\partial T}\right)_P dT + \left(\frac{\partial U}{\partial P}\right)_T dP$$

how to get
$$\left(\frac{\partial U}{\partial V}\right)_{X=\text{some other variable}}$$
???

"divide through by dV holding X (something else) constant "

$$\left(\frac{\partial U}{\partial V}\right)_{\mathcal{X}} = \left(\frac{\partial U}{\partial T}\right)_{P} \left(\frac{\partial T}{\partial V}\right)_{\mathcal{X}} + \left(\frac{\partial U}{\partial P}\right)_{T} \left(\frac{\partial P}{\partial V}\right)_{\mathcal{X}}$$

later special simplification if X=P or x=T

two relationships for ideal gasses: we looked ahead (lect 4 slide #5)

for any substance

 $dU_V = dq_V = n \overline{C}_V dT$ and $\Delta U_V = \int n \overline{C}_V dT$ for a constant volume process

· but for an ideal gas

 $dU = n\overline{C}_V dT$ and $\Delta U = n\overline{C}_V \Delta T$ for ANY path (not only constant V process)

[other parts of path, changes of P and V with constant T, give zero contribution to ΔU]

· for ideal gas

$$\overline{C}_P = \overline{C}_V + R$$

• monatomic ideal gas

$$\overline{C}_V = \frac{3}{2}R \qquad \overline{C}_P = \frac{5}{2}R$$

[simple proof coming soon]

7

ideal gas $\Delta U_{ideal \ gas} = n \overline{C}_V \Delta T$ for ANY path (not only constant V process)

 $dU_V = dq_V = n \overline{C}_V dT$ and $\Delta U_V = \int n \overline{C}_V dT$ for a constant volume process $dU_{ideal\ gas} = n \overline{C}_V dT$ and $\Delta U_{ideal\ gas} = n \overline{C}_V \Delta T$ for ANY path (not only constant V process)

(general, w_{other}=0, dn=0)

$$dU(T,V) = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

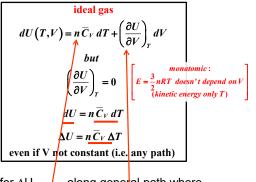
$$dU = dq - PdV \text{ first law}$$

$$\underline{dU}_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} dT = dq_{V} = n\overline{C}_{V} dT$$

$$\left(\frac{\partial U}{\partial T}\right)_{V} \equiv n\overline{C}_{V}$$

$$dU = n\overline{C}_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

$$\Delta U = n\int_{T}^{T_{f}} \overline{C}_{V}(T) dT + \int_{V}^{f} \left(\frac{\partial U}{\partial V}\right)_{T} dV$$



for ΔU_{ideal} gas along general path where both T (const V) and V (const T) vary $\Delta U = n \overline{C}_V \Delta T \qquad \Delta U = n a da$ no effect on U

$$n\overline{C}_{P} = \left(\frac{dq}{dT}\right)_{P} \quad C_{P} \quad vs \quad C_{V} \left(E\&R_{4th} \, p.76\right) \quad n\overline{C}_{V} = \left(\frac{dq}{dT}\right)_{V}$$

$$\boxed{ In general }$$
for only P-V work and closed system $(dw_{other} = 0, dn=0)$

$$dU = dq - P_{ext} dV \quad \text{for infintesimal change } P_{ext} = P_{int} = P$$

$$dq = dU + P dV$$

$$divide \ by \ dT, \ V \ const \quad n\overline{C}_{V} = \left(\frac{dq}{dT}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} + P\left(\frac{\partial V}{\partial T}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = n\overline{C}_{V}$$

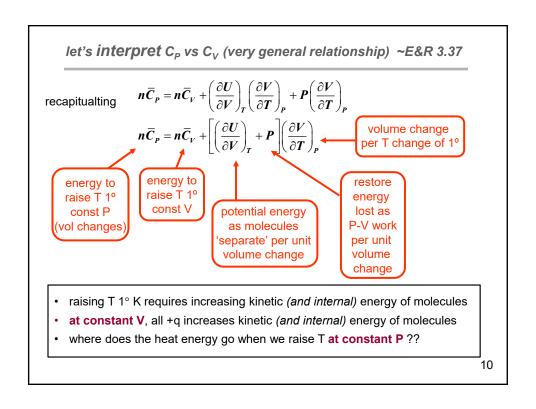
$$divide \ by \ dT, \ P \ const \quad n\overline{C}_{P} = \left(\frac{dq}{dT}\right)_{P} = \left(\frac{\partial U}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P} = n\overline{C}_{V}$$

$$divide \ by \ dT, \ P \ const \quad \left(\frac{\partial U}{\partial T}\right)_{P} = n\overline{C}_{V} \left(\frac{\partial T}{\partial T}\right)_{P} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P}$$

$$\left(\frac{\partial U}{\partial T}\right)_{P} = n\overline{C}_{V} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P}$$

$$now \ to \ get \left(\frac{\partial U}{\partial T}\right)_{P} : \text{in terms of } T, V$$

$$\left(\frac{\partial U}{\partial T}\right)_{P} = n\overline{C}_{V} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P}$$



$$n\overline{C}_{P} = n\overline{C}_{V} + \left[\left(\frac{\partial U}{\partial V}\right)_{T} + P\right] \left(\frac{\partial V}{\partial T}\right)_{P}$$
for ideal gas
$$V = \frac{nRT}{P}$$
Energy, U is function of ONLY T, i.e. U=U(T)
$$\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{nR}{P}$$

$$\left(\frac{\partial U}{\partial V}\right)_{T} = \mathbf{0}$$

$$n\overline{C}_{P} = n\overline{C}_{V} + \left[0 + P\right] \frac{nR}{P}$$

$$n\overline{C}_{P} = n\overline{C}_{V} + nR$$

$$\overline{C}_{P} = \overline{C}_{V} + R \quad \text{for ideal gas}$$

experimental C_V and C_P for selected gasses: how 'good' is C_P = C_V +nR?

Nature of	Gas	C, (J mol ⁻¹ K ⁻¹)	C _p (J mol ⁻¹ K ⁻¹)	C, - C, (J mol ⁻¹ K ⁻¹)	
Monatomic	Не	12.5	20.8	8.30	1.66
Monatomic	Ne	12.7	20.8	8.12	1.64
Monatomic	Ar	12.5	20.8	8.30	1.67
Diatomic	H ₂	20.4	28.8	8.45	1.41
Diatomic	O ₂	21.0	29.3	8.32	1.40
Diatomic	N_2	20.8	29.1	8.32	1.40
Triatomic	H ₂ O	27.0	35.4	8.35	1.31
Polyatomic	CH ₄	27.1	35.4	8.36	1.31

R=8.31 J mol⁻¹ K⁻¹

ideal gas $\overline{C}_{P} - \overline{C}_{V} = R$ monatomic $\overline{C}_{V} = \frac{3}{2}R$ $\underline{diatomic} \ \overline{C}_{V} \cong \frac{5}{2}R$ $\underline{J} \ mol^{-1} \ K^{-1}$ $\frac{3}{2}R = 12.47$ $\frac{5}{2}R = 20.78$

 $\frac{7}{2}\mathbf{R} = 29.10$

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2

12

1st Law recapitulation

 $U \equiv internal energy$

 $dU_{sys} = dq_{sys} + dw_{sys} + dn_{sys}$ (n=number of moles; dn=0 for closed system)

$$dU_{sys} = -dU_{surr}$$
 (energy conserved)

dU is exact differential

U is a state function

completely general

for only P-V work and closed system (dn=0) $\,$

$$dU = d\bar{q} - P_{ext}dV$$

- Constant volume process $dU_V = dq_V \Delta U_V = q_V$
- Adiabatic process $dU = dw \Delta U = w$

13

enthalpy: q for process at constant Pressure

H≡U+P_{int}V (definition of enthalpy, H)

since U is state function; and since P, V are state variables, H is also a

STATE FUNCTION

completely general

why a new state function you might ask??

 $dU_V = \overline{dq}_V$; $\Delta U_V = q_V$ heat at constant volume

but most reactions and many physical processes are carried out at constant P

desire state function for q_p , heat at constant pressure

enthaply: H, a state function for heat transfer at constant pressure

$$H = U + P_{int}V$$

$$dH = \underline{dU} + PdV + VdP \qquad (P_{int} = P_{ext} \text{ for infinitesimal change } dP)$$

$$dH = \underline{dq} - PdV + \underline{dw}_{other} + PdV + VdP$$

$$dH = \overline{dq} + VdP + \overline{dw}_{other}$$
and at P=constant and $\overline{dw}_{other} = 0$

$$dH_{P} = \overline{dq}_{P}$$

$$\Delta H_{P} = q_{P} \quad \text{as advertised } !!$$

$$\Delta H_{P} = q_{P} \quad \text{at const P and no } w_{other}$$

$$\Delta H_{P} > 0 \quad \text{endothermic (heat gained by system)}$$

$$\Delta H_{P} < 0 \quad \text{exothermic (heat lost by system)}$$

```
\Delta H_P = q_p = \int n\overline{C}_P dT \approx n\overline{C}_P \Delta T \quad \text{(general, for } w_{\text{other}} = 0, \, \text{dn} = 0)
```

but for ideal gas

∆H ideal gas

$$H \equiv U + PV = U + nRT$$
 $dH = dU + nRdT$ (general for ideal gas)
 $dH = n\overline{C}_v dT + nRdT$ (general for ideal gas, even V not const)
 $dH = n(\overline{C}_v + R)dT$
 $dH = n\overline{C}_p dT$ IDEAL GAS ANYTIME,
EVEN IF P NOT CONSTANT

 $\Delta H = n \overline{C}_p \Delta T$ ideal gas general (for $W_{other} = 0$, dn = 0)

manipulating thermodynamic functions: fun and games

GOALS:

Evaluate changes a percodynamic functions in terms of specific serial ts

e.g. $\left(\frac{\partial V}{\partial T}\right)$

 Transform expressions that can be evaluated in terms of P,V,T or other directly measurable quantities.

17

manipulating thermodynamic functions: fun and games

for example:

HW#2

12. Derive the following for any closed system, with only P-V work:

$$C_{V} = -\left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{U}$$

small 'cheat' via 'look ahead'

many of the results in E&R ch 3 use the below [yet] 'unproven' result;

that we will derive later (using 2nd Law)

class should use result in HW2 #13*

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T \left(\frac{\partial P}{\partial T}\right)_{V} - P$$

 $E \& R_{4th} eqn. 3.15 \quad [eqn. 3.19]_{3td}$

19

total differential for U(T,V,n) and H(T,P,n)

$$U(T,V,n_1,n_2,...,n_N)$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V,n} dT + \left(\frac{\partial U}{\partial V}\right)_{T,n} dV + \sum_{i=1}^{N} \left(\frac{\partial U}{\partial n_i}\right)_{T,V,n_j \neq n_i} dn_i$$

$$H(T,P,n_1,n_2,...,n_N)$$

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P,n} dT + \left(\frac{\partial H}{\partial P}\right)_{T,n} dP + \sum_{i=1}^{N} \left(\frac{\partial H}{\partial n_i}\right)_{T,P,n_i \neq n_i} dn_i$$

for now closed system all dn;=0

U(T,V): some manipulations and relationships (closed system)

$$dU(T,V) = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV \quad \text{closed system, } \overline{dw}_{\text{other}} = 0$$

$$dU(T,V) = d \cdot q - P dV$$

$$\mbox{definition of } \mathbf{C_V} \!\!: \quad \left(\frac{\partial U}{\partial T}\right)_{\!\!\!\!V} = \! \left(\frac{d \mathbf{q}}{dT}\right)_{\!\!\!\!\!V} = \! C_{\!\!\!\!V} = \! n \overline{C}_{\!\!\!\!V}$$

'divide dU by dV, holding T constant':
$$\left(\frac{\partial U}{\partial V} \right)_T = \left(\frac{d t q}{dV} \right)_T - P$$

$$hmmm \left(\frac{dq}{dV}\right)_T \stackrel{??}{=} T \left(\frac{\partial P}{\partial T}\right)_V \text{ see you later}$$

but here we can also use our 'look ahead':
$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$$

to get
$$dU(T,V) = n\overline{C}_V dT + \left[T\left(\frac{\partial P}{\partial T}\right)_V - P\right] dV \quad \text{eqn 3.16, p 70 E&R}_{4th} \left[\text{eqn 3.20 p 51}\right]_{3td}$$

 \overline{C}_V , P, T, V and dervivatives are all experimentally accessible

H(T,P): some manipulations and relationships (closed system)

$$(\partial H/\partial T)_P = C_P$$
 $(\partial H/\partial P)_T = ??$ in terms of P,V,T and derivatives

$$dH\left(T,P\right) = \left(\frac{\partial H}{\partial T}\right)_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP$$
 start:

dH = dU + PdV + VdP closed system, $\vec{a}_{\text{other}} = 0$

'divide dH by dP, holding T constant':
$$\left(\frac{\partial H}{\partial P} \right)_T = \left(\frac{\partial U}{\partial P} \right)_T + P \left(\frac{\partial V}{\partial P} \right)_T + V \left(\frac{\partial P}{\partial P} \right)_T$$

chain rule:
$$\left(\frac{\partial U}{\partial P}\right)_T = \left(\frac{\partial U}{\partial V}\right)_T \left(\frac{\partial V}{\partial P}\right)_T$$

$$\frac{\left(\frac{\partial H}{\partial P}\right)_{T} = \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial P}\right)_{T} + P\left(\frac{\partial V}{\partial P}\right)_{T} + V}{\left(\frac{\partial V}{\partial P}\right)_{T} \left(\frac{\partial U}{\partial V}\right)_{T} + P\left(\frac{\partial U}{\partial V}\right)_{T} + V} = \left(\frac{\partial U}{\partial P}\right)_{T} \left(\left(\frac{\partial U}{\partial V}\right)_{T} + P\right) + V$$

$$\frac{\left(\frac{\partial H}{\partial P}\right)_{T} = \left(\frac{\partial V}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial P}\right)_{T} + P\left(\frac{\partial V}{\partial P}\right)_{T} + V}{\left(\frac{\partial V}{\partial P}\right)_{T} \left(\frac{\partial V}{\partial V}\right)_{T} + P\left(\frac{\partial V}{\partial P}\right)_{T} + V} = \left(\frac{\partial V}{\partial P}\right)_{T} \left(\frac{\partial V}{\partial V}\right)_{T} + P\left(\frac{\partial V}{\partial P}\right)_{T} + V$$

almost fini !!
$$\left[\left(\frac{\partial H}{\partial P} \right)_T = T \left(\frac{\partial V}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V + V \quad \text{eqn 3.40 E&R}_{4th} \left[3.44 \right]_{3d}$$

from previous slide
$$\left(\frac{\partial H}{\partial P} \right)_T = T \left(\frac{\partial V}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_I + V$$

$$V(T,P) \quad dV = \left(\frac{\partial V}{\partial T} \right)_P dT + \left(\frac{\partial V}{\partial P} \right)_T dP \left(\frac{\partial V}{\partial T} \right)_V$$

$$= \left(\frac{\partial V}{\partial T} \right)_P \left(\frac{\partial T}{\partial T} \right)_V + \left(\frac{\partial V}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V$$

$$0 = \left(\frac{\partial V}{\partial T} \right)_P + \left(\frac{\partial V}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V$$

$$\left(\frac{\partial V}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V = - \left(\frac{\partial V}{\partial T} \right)_P$$

$$eqn 3.40 \text{ E&R}_{4th} \left[3.44 \right]_{3rd}$$

$$dU(T,V) = n \overline{C}_V dT + \left[T \left(\frac{\partial P}{\partial T} \right)_V - P \right] dV \quad \text{eqn 3.16, p 70 E&R}_{4th} \left[\text{eqn 3.20 p 51} \right]_{3rd}$$

$$dH(T,P) = n \overline{C}_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP$$

$$\overline{C}_V, \overline{C}_P, P, T, V \text{ and dervivatives are all experimentally accessible}$$

in section derive equation following equation

$$n\overline{C}_{V} = n\overline{C}_{P} + \left[\left(\frac{\partial H}{\partial P} \right)_{T} - V \right] \left(\frac{\partial P}{\partial T} \right)_{V}$$

start with

$$dU = dH - PdV - VdP$$

divide by dT with V constant and then boogie along as we just did!!

First Law: ideal gas calculations

relationships that apply to **ideal gasses** for all conditions with w_{other}=0 and constant composition (some also apply **more generally**):

$\Delta U = q + w$	$w_{PV} = -\int P_{ext} dV$	PV = nRT
$q_{V} = n \int \overline{C}_{V} dT$	$q_P = n \int \overline{C}_P dT$	$\overline{C}_P = \overline{C}_{\rm V} + R$
$ = n\overline{C_V}\Delta T $ $H = U + PV $	$? = n\overline{C}_{P}\Delta T $ $ \Delta U_{any \ conditions} = n\overline{C}_{V}\Delta T $	$\Delta H_{any conditions} = n \overline{C}_P \Delta T$
monatomic ideal gas	$\overline{C}_{\nu} = \frac{3}{2}R$	$\overline{C}_P = \frac{5}{2}R$

? only when C_v or C_p doesn't depend on T!

25

Lecture 5: GOALS

- ✓ Some new math 'tricks'
- ✓ for ideal gas $\Delta U=n$ C_V ΔT along any path (even if V changes along path)
- √ Derive C_P=C_V+nR for ideal gas
- ✓ New state function enthalpy, H, $\Delta H_P = q_P$
- ✓ for ideal gas $\Delta H=n$ $\overline{C_P}$ ΔT along any path (even if P changes along path)
- ✓ Use the mathematics of differentials to derive relationships among thermodynamic variables

END OF LECTURE 5

