Chemistry 163B Winter 2020 notes for lecture 5 Math and Enthalpy

Chemistry 163B	
Lecture 5 Winter 2020	
Mathematics for Thermodynamics	
Enthalpy	
Challenged Penmanship Notes	
	1

$$
d(x y)=y d x+x d y
$$

"divide through by ??" math handout item \#6

$$
\begin{aligned}
& d U(T, P)=\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P \\
& \text { how to get }\left(\frac{\partial U}{\partial V}\right)_{X=\text { eome omer rariaste }} \text { ??? }
\end{aligned}
$$

"divide through by dV holding X (something else) constant "

$$
\left(\frac{\partial U}{\partial V}\right)_{0}=\left(\frac{\partial U}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{0}+\left(\frac{\partial U}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial V}\right)_{0}
$$

later special simplification if $\mathrm{X}=\mathrm{P}$ or $\mathrm{x}=\mathrm{T}$

Chemistry 163B Winter 2020 notes for lecture 5 Math and Enthalpy

two relationships for ideal gasses: we looked ahead (lect 4 slide \#5)

- for any substance
$d U_{v}=d q_{v}=n \overline{\boldsymbol{C}}_{v} d T$ and $\Delta \mathbf{U}_{v}=\int n \overline{\boldsymbol{C}}_{v} d T$ for a constant volume process
- but for an ideal gas
$d U=n \bar{C}_{V} d T$ and $\Delta U=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process) [other parts of path, changes of P and V with constant T, give zero contribution to ΔU]

$$
\begin{aligned}
& \text { - for ideal gas } \\
& \bar{C}_{P}=\overline{\boldsymbol{C}}_{r}+R \\
& \text { - monatomic ideal gas } \\
& \bar{C}_{r}=\frac{3}{2} R \quad \bar{C}_{P}=\frac{5}{2} R \\
& \text { [simule pucuí cuminy suunt] }
\end{aligned}
$$

ideal gas $\Delta U_{\text {vel gat }}=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process)
$d U_{V}=d q_{V}=n \bar{C}_{V} d T$ and $\Delta \mathrm{U}_{V}=\int n \bar{C}_{V} d T$ for a constant volume process
$d U_{\text {ied } g a}=n \bar{C}_{V} d T$ and $\Delta U_{\text {ided } g \sigma}=n \bar{C}_{V} \Delta T$ for ANY path (not only constant V process)
(general, $\mathrm{w}_{\text {oter }}=0, \mathrm{dn}=0$)
$d U(T, V)=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$
$d U=d q-P d V$ first law
$d U_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} d T=d q_{V}=n \bar{C}_{V} d T$
$\left(\frac{\partial U}{\partial T}\right)_{V}=n \bar{C}_{V}$
$d U=n \bar{C}_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$
$\Delta U=n \int_{J_{i}}^{T_{V} \bar{C}_{V}(T) d T+\int_{V i}^{V}\left(\frac{\partial U}{\partial V}\right)_{T} d V}$

let's interpret C_{P} vs C_{V} (very general relationship) $\sim E \& R 3.37$

- raising $\mathrm{T} 1^{\circ} \mathrm{K}$ requires increasing kinetic (and internal) energy of molecules - at constant \mathbf{V}, all +q increases kinetic (and internal) energy of molecules where does the heat energy go when we raise T at constant P ??

Chemistry 163B Winter 2020 notes for lecture 5 Math and Enthalpy

for only P-V work and closed system (dn=0)

$$
d U=d q-P_{e v} d V
$$

$$
\text { - Constant volume process } \mathrm{dU}_{\mathrm{v}}=d q_{V} \quad \Delta \mathrm{U}_{\mathrm{V}}=q_{V}
$$

enthalpy: q for process at constant Pressure

$\mathrm{H} \equiv \mathrm{U}+\mathrm{P}_{\text {int }} \mathrm{V} \quad$ (definition of enthalpy, H)
since U is state function; and since P, V are state variables, H is also a
STATE FUNCTION completely general
why a new state function you might ask??
$d U_{V}=\vec{d} q_{V} \quad ; \quad \Delta U_{V}=q_{V} \quad$ heat at constant volume
but most reactions and many physical
processes are carried out at constant P

$$
\text { - Adiabatic process } \quad \mathrm{dU}=屯 w \quad \Delta \mathrm{U}=w
$$

desire state function for $\mathbf{q}_{\mathbf{p}}$, heat at constant pressure
enthaply: H, a state function for heat transfer at constant pressure
$H \equiv U+P_{\text {vit }} V$
$\boldsymbol{d H}=\underline{\boldsymbol{U}} \boldsymbol{U}+\boldsymbol{P} d \boldsymbol{V}+\boldsymbol{V} d \boldsymbol{P} \quad\left(P_{\mathrm{z}}=\boldsymbol{P}_{\mathrm{z}}\right.$ for infinitesimal change $\left.d P\right)$
$d H=\underline{d q}-P d V+\boldsymbol{d} w_{\text {other }}+P d V+V d P$
$d H=\overline{\vec{a} q+V A P+\vec{t} \sigma_{\text {other }}}$
and at $\mathrm{P}=$ constant and $\quad \vec{d} w_{\text {other }}=0$
$\boldsymbol{d} \boldsymbol{H}_{P}=\overrightarrow{\boldsymbol{d}} \boldsymbol{q}_{P}$
$\Delta H_{P}=q_{P}$ as advertised!!
$\Delta H_{P}=q_{P}$ at const P and no $\mathrm{w}_{\text {other }}$
$\Delta H_{P}>0$ endothermic (heat gained by system)
$\Delta H_{P}<0$ exothermic (heat lost by system)

$$
\begin{aligned}
& \Delta H \text { ideal gas }
\end{aligned}
$$

$$
\begin{aligned}
& \text { but for ideal gas } \\
& H \equiv U+P V=U+n R T \\
& \boldsymbol{d} \boldsymbol{H}=\boldsymbol{d} \boldsymbol{U}+\boldsymbol{n R} \boldsymbol{d} \boldsymbol{T} \quad \text { (general for ideal gas) } \\
& \boldsymbol{d H}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{v}} \boldsymbol{d} \boldsymbol{T}+\boldsymbol{n R} \boldsymbol{d} \boldsymbol{T} \text { (general for ideal gas, even } V \text { not const) } \\
& d H=n\left(\bar{C}_{v}+R\right) d T \\
& d H=n \bar{C}_{P} d T \quad \text { IDEAL GAS ANYTIME, } \\
& \text { EVEN IF P NOT CONSTANT } \\
& \Delta \mathrm{H}=n \bar{C}_{P} \Delta T \quad \text { ideal gas general (for } \mathrm{w}_{\text {other }}=0, \mathrm{dn}=0 \text {) }
\end{aligned}
$$

manipulating thermodynamic functions: fun and games

for example:
HW\#2
12. Derive the following for any closed system, with only P-V work:
$C_{V}=-\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{U}$

Chemistry 163B Winter 2020 notes for lecture 5 Math and Enthalpy

small 'cheat' via 'look ahead'	
many of the results in E\&R ch 3 use the below [yet] 'unproven' result; that we will derive later (using ${ }^{2^{\text {nd }}}$ Law) class should use result in HW2 \#13*	
$\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=\boldsymbol{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}-\boldsymbol{P}$ $\boldsymbol{E} \& \boldsymbol{R}_{\text {tid }}$ eqn. $3.15 \quad\left[\right.$ eqn.3.19] ${ }^{\text {a }}$	
	19

```
total differential for \(U(T, V, n)\) and \(H(T, P, n)\)
    \(\boldsymbol{U}\left(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{N}\right)\)
    \(d \boldsymbol{U}=\left(\frac{\partial U}{\partial T}\right)_{V, n} d T+\left(\frac{\partial U}{\partial V}\right)_{T, n} d V+\sum_{i=1}^{N}\left(\frac{\partial U}{\partial n_{i}}\right)_{T, V, n_{j} \neq n_{i}} d n_{i}\)
\(\boldsymbol{H}\left(\boldsymbol{T}, \boldsymbol{P}, \boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{N}\right)\)
\(d \boldsymbol{H}=\left(\frac{\partial \boldsymbol{H}}{\partial T}\right)_{P, n} d \boldsymbol{T}+\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T, n} d P+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{H}}{\partial n_{i}}\right)_{T, P, n_{j} \neq n_{i}} d n_{i}\)
    for now closed system all \(\mathrm{dn}_{\mathrm{i}}=0\)


almost fini !! \(\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial V}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{V}+V\) eqn \(3.40 \mathrm{E} \mathrm{\& R}_{\text {tat }}[3.44 \mathrm{~L}\)

\section*{in section derive equation following equation}
\[
\boldsymbol{n} \overline{\boldsymbol{C}}_{V}=\boldsymbol{n} \overline{\boldsymbol{C}}_{P}+\left[\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}-\boldsymbol{V}\right]\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}
\]
start with
\(d U=d H-P d V-V d P\)
divide by \(d T\) with V constant and then boogie along as we just did!!

\section*{Chemistry 163B Winter 2020 notes for lecture 5 Math and Enthalpy}


\section*{Lecture 5: GOALS}
\(\checkmark\) Some new math 'tricks'
\(\checkmark\) for ideal gas \(\Delta \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \Delta \mathrm{T}\) along any path (even if \(V\) changes along path)
\(\checkmark\) Derive \(\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}+\mathrm{nR}\) for ideal gas
\(\checkmark\) New state function enthalpy, \(H, \Delta H_{P}=q_{P}\)
\(\checkmark\) for ideal gas \(\Delta \mathrm{H}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \Delta \mathrm{T}\) along any path (even if \(P\) changes along path)
\(\checkmark\) Use the mathematics of differentials to derive relationships among thermodynamic variables

\section*{END OF LECTURE 5}
```

