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Lecture 5: GOALS 2024

Some new math ‘tricks’

for ideal gas AU=nC, AT along any path
(even if V changes along path)

Derive Cp=C,+nR for ideal gas

New state function enthalpy, H, AHz=qp

.

for ideal gas AH=n"C,, AT along any path
(even if P changes along path)

Use the mathematics of differentials to derive
relationships among thermodynamic variables

total differential (math handout item #3; E&R ch. 3)

infinitesimal change in value of state function (well behaved function)

S(x,y) awell behaved function

differential of product (product rule)

(er) (of )
total change in f af :l | x| = | dy,
change in f change in f
per unit change in x amount .Df * | per unit change in y amount .Df
change in x changeiny

(along x direction) (along y direction)

d(xy) = ydx + xdy

example of implication of total differentials

First Law
dU,, =dq,, +&@w,, +dn__(n=number of moles; dn=0 for closed system)

Uis state function = U, is exact differential

i

Sfor dn =0 (closed system)

@ Uy . (8U)

av@. Py L ar+[ZZ| ap Fdy,, + b,
CE=7 ), E ), Z s * D
OR
@ . (U @D
wa S Z ) ar| Z ar Fay,, v,

\eT )= \ &V )im : =

“divide through by ??” | math handout item #6

dU(T, P) :(ﬂj dT+[‘i—U] dP
T ), oP J;
how to get ;: ';; J‘ o 7? ;

“divide through by dV holding X (something else) constant “

b (7 @b

later special simplification if X=P or x=T
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two relationships for ideal gasses: we looked ahead (lect 4 slide #5)

« for any substance
dU, =dg, =nCrdl and AL’,.:I;. CrdT  for a constant volume process

« but for an ideal gas
dU =nC,dT and AU = nC, AT for ANY path (not only constant V process)

[other parts of path, changes of P and V with constant T, give zero contribution to AU]

for ideal gas
C,=C,+R

monatomic ideal gas

3. _ 5
C,==R C,=>R

[simple proof coming soon]

ideal gas AU, ., =nC,AT for ANY path (not only constant V process)

~
dU, =dg, =n€rdT and AU, =[nCr dT for a constant volume process
AUy oy =nCydT and AU, ., = nC, AT for ANY path (not only constant V process)
-
(general, w,,_ =0, dr=0) ideal gas
. . dU(T.V )=nCy ﬂT+(%) av
dz'(r,V)=[1] a‘T+[£] v T
ar ), a ) but _ i}
dU =dq -PdV first law 7 e faemic 1
N ol fi i) -0 zeé..m' doesn 't depend on V'
v, [%] dT =dy, =nCr dT & Jr | ineicanegron |
- g -_ —
. U =nCy dl
[i] =i —
er ), T=nCr AT
U —nC. H_'_[E] v even if V fot constant (i.e]any path)
v )
for Auldeallas along genefal path where

T e i
Al E"Iﬂyh,j[ﬁ]‘”v both T (zanstv) and V (constT) vary
- - AU=nCy AT AU =nada

no offect on U
8
let’s interpret C,, vs C, (very general relationship) ~E&R 3.37
=~ _ = [ev) (ev (av
. . nCp=nCp, + —]—] +P —]
recapitualting s Voler Je\er ), " \er ),
(eU } P If EV] volume change
— | +P || — o
) |\er Jp per T change of 1
energy to energy to restore
raise T 1° raise T 1° energy
const P const V potential energy lost as
vol changes) as molecules P-V work
‘separate’ per unit per unit
volume change volume
change
« raising T 1° K requires increasing kinetic (and internal) energy of molecules
« at constant V, all +q increases kinetic (and internal) energy of molecules
« where does the heat energy go when we raise T at constant P ??
10

7
4 hY —_ { A
ﬂ | nCr =| ﬂ
\a1 ), Cp vs Cy (E&Ryy, p.76) \dr ),
for only P-V work and closed system (aw,,,, =0, dn=0)
dU =dq—P,dv forinfintesimal changeP,,=F,, =P
dg=dU + PdV
. = (@) _(eU) . fap\_(eu
divide by dT, V const nCr =l ), "r fP‘—
divide by dT, P const nC, = [
express dU(T,V) (,1')
now to get| — | :
ar ‘P
divide by dT, P const iin terms of T,V
finally 1l 7€ 9
Cp vs C, for ideal gas
_ _ (ar Ira
n r=p:€',.+ '{i] + f—VW
\ev ), \eor),
for ideal gas
V= nRT
P
Energy. Uis function of ONLY T.i.e. U=U(T)
(év) _nR
so: Lér J, P
6o
\eTzJ,
— — nR
nC,=nC, +[U—P]?
nC = nC, . +nR
C,=C, +R for ideal gas ]
1"

experimental C, and C,, for selected gasses: how ‘good’ is C,=C,+nR ?

EE-E R=8.31 J mOI-1 K.1

N

koot o =) ideal gas
20.8 8.30 1.66

Monatomic  He 12.5 f‘P —(,_'I_ =R
Monatomic ~ Ne 12.7 20.8 . 164 L=
e monatomic C;-
Monatomic ~ Ar 125 20.8 1.67
Diatomic | H, 204 288 L41 diatomic C;
Diatomic O, 21.0 29.3 8.32 1.40 J mol™ K™
Diatomic N, 20.8 29.1 8.32 1.40 ER =1247
==, STt
Tratomic H,O 27.0 35.4 8.35 1.31 5
—-R=20.78
Polyatomic  CH, 271 354 236 131 2
7 H
—R=2 :
3 R=29.10 §
Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2
12
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15t Law recapitulation

U = internal energy
du,, =dq,,. +aw,, +dn,, (n=number of moles: dn=0 for closed system)
du,, =-du,,, (energy conserved)

dU is exact differential

U is a state function completely general

for only P-V work and closed system (dn=0)
dU =dq - P_dv

+ Constant volume process dU,= @q;, AUy=(;,

- Adiabatic process du=dw AU=w

enthalpy: q for process at constant Pressure

H=U+P,V  (definition of enthalpy, H)

since U is state function; and since P, V
are state variables, H is also a

STATE FUNCTION completely general

why a new state function you might ask??
dU, =dq, ; AU, =gq, heatatconstant volume

but most reactions and many physical
processes are carried out at constant P

desire state function for qp, heat at constant pressure

14

ply: H, a state fi ion for heat fer at pressure

H=U+PyV
dH = ﬂ' +PdV +VdP  (P_= P_for infinitesimal change dP )
dH =dq — PdV + dw,,,, + PdV +VdP
dH = dq + VAP + 3%,

and at P=constantand aw
dH, =dq,
AH, =¢q, as advertised!!

=0

other

AH, =¢qp atconstP and no w
AH, >0 endothermic (heat gained by system)
AH, <0 exothermic (heat lost by system)

A4H ideal gas

C ; independent
of T

AH, = q,= J‘nfpdT :anAT (general,forw __ =0,dn=0)

but for ideal gas

H=U+PV=U+nRT
dH = dU +nRdAT (general for ideal gas)
dH =nC, AT + nRAT (general for ideal gas, even V not const)
dH = n(C, + RydT
dH = u(_“PdT IDEAL GAS ANYTIME,
EVENIF P NOT CONSTANT

AH=nC,AT ideal gas general (for w_,_=0, dn=0)

16

manipulating thermodynamic functions: fun and games

nges in
.g. AU, AH, etc) into
expressions that can be evaluated in terms of
P,V,T or other directly measurable quantities.

manipulating thermodynamic functions: fun and games

for example:
HW#2

12. Derive the following for any closed system,
with only P-V work:

ou\ (oV

C,=—|—| | =
ov ).\ er ),

18
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total differential for U(T,V,n) and H(T,P,n)

fx &
small ‘cheat’ via ‘look ahead’ w
many of the results in E&R ch 3 use 7
the below [yet] ‘unproven’ result; U(T,V.n,n,,....ny)
that we will derive later (using 2" Law) - -
oU oU
. dU = dT +| —
class should use result in HW2 #13* orT ), av ),
n a
f U -7 P N \ H(T,P,Hl,llg,...,ﬂx) )
v T ) T 6H oH g
ov ), er ), dH=|— | dT+|—| dP+3}. dn,
or P.n opP T.n ; T.P.ny#n;
E&R,, eqn.3.15 [eqn319]
\_ b J for now closed system all dn, =0
19 20
H(T,P): some lations and relationships (closed system)
|(6H/5T )p =C» (0H/OP), =22 in terms of P,V.T and derivatives

dH(RP)-[%)%ﬂ-x(gldP
Ll

start: a
dH =dU +PdV +VdP ciosed system, diy_ =0

&

av(r.v)=[ ) ar+[ZE
ar ), T\
‘divide dH by dP,

U(T,V): some manipulations and relationships (closed system)
J 4V dosed system, dw__=0
r
holding T constant’:

AU, V) =dq- Pav
(v [ 3\ _
definitionof C,: (S| _[TL) _ ¢ _ g,
\er ). lar)
‘dividedUbydv, (€U} _(dq) _p
holding T constant: LoV ). |av ), 2o T (P chain rule:
] Trnarnm | dTlg ;" =T| ;7 ;'_ see you later
but here we can also Y () _p
use our ‘look ahead’: av Jy éar
to _ i - [éP) .
get |dAU(T,V)=nC.dT + T[_—T | =P |dV  eqn3.16,p TO0E&R  [eqnazops]
cr )y -
14
= . - . . almost fini 1! [?J =r(‘i—] (—ld' eqn 340E&R,, [3.4]
Cp, P, T,V and dervivatives are all experimentally accessible 21 aP Jr T 2
so finishing up for dU and dH: in section derive equation following equation
from previous slide {ﬂ] = [ﬂJ (EJ +V
ap ). |\@ ) \aT £ o ni HCH\ V}[”"-
Ed Ed Ed nly =nlp+| ——| = s
V(T.P) iV {il”{?l”{?] épP . er ),
P
)
start with
dU =dH — PdV -VdP
divide by dT with V constant
and then boogie along as we just did!!

1))

:(£
similar to HW#1 "'{ il
b 1d- NLANMCAYLS
prob it ’ (arl*(at’l(ar]
o) (ar oV
@ | |\er | ar
eqn 3.40 E&R ,, [3.4]
\
—P:|rtl' eqn3.16, p 70 E&R _ [egnazops]
¥
24

23

_ op
4U (T V) =nE, dr{r(c_
or ),
U
LA P
ar ),

dH(T,P)= nEPdT-{I'—T(
C,,Cp, P,T,V and dervivatives are all experimentally accessible
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First Law: ideal gas calculations

Lecture 5: GOALS
relationships that apply to ideal gasses for all conditions with w,,, =0 e ,
and constant composition (some also apply more generally): " v Some new math ‘tricks
- v for ideal gas AU=nE\,AT along any path
AU =g+w W == PV’ PV =uRT (even if V changes along path)
4y =n| GdT ¢, =n[C;dl Tl +R v Derive Cp=C,+nR for ideal gas
2 _ P p=Ly T
=nC,AT =nC,AT i
! ’ v New state function enthalpy, H, AHp=qp
H=U+PV AU g1y carcition: = NCy AT ‘ o
v for ideal gas AH=n C, AT along any path
monatomic ideal gas Z. =5R (even ifP changes along path)

v Use the mathematics of differentials to derive

? only when C, or C, doesn’t depend on T ! relationships among thermodynamic variables

25 26
why is Cy larger for diatomic than for monatomic gas ?
activated at high T htip:/fimages flatworldknowledge.com/
L= jR il ig18 013.4pg
monatomic C,. = — + <P
"2 .,-‘,. e ‘
: L= 5 . ]
diatomie C,. 5—’R bending
non — linear polyatomic C,. > 3R @ L )
- . § . translational and rotational mod es y @ °®
END OF LECTURE 5 JREE oK ¢
asymmiic sudiching
H vibrational motion rotational motion Jtranslational motion
heat energy rotation | vibration
goes into translation active at 298K
(total)
——»| monatomic 3 0 0(0)
—| diatomic 3 2 0(1)
i https://www.slideserve.com/
polvatomic | 3 EET) i sl o
27 law-the-concepts

28




