Chemistry 163B Winter 2020
notes for lecture 5 Math and Enthalpy

Chemistry 163B
Lecture 5 Winter 2020

Mathematics for Thermodynamics
Enthalpy
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Lecture 5: GOALS

Some new math ‘tricks’

for ideal gas AU=nC, AT along any path
(even if V changes along path)

.

Derive Cp=C,+nR for ideal gas

New state function enthalpy, H, AHz=qp

.

for ideal gas AH=n"C,, AT along any path
(even if P changes along path)

Use the mathematics of differentials to derive
relationships among thermodynamic variables

total differential (math handout item #3; E&R ch. 3)

infinitesimal change in value of state function (well behaved function)

f(x,y) awell behaved function
9 9
total change in f df:(%] dx+[lj dy,
Ox ),

[

change in f
per unit change in x
(along x direction)

change in f
amount of + it oh .
change in x per unitcnange in y
(along y direction)

amount of
changeiny

differential of product (product rule)

d(xy) = ydx + xdy

example of implication of total differentials

First Law

du,, =dq,, +adw,, +dn, (n=number of moles; dn=0 for closed system)

U is state function = dU  is exact differential

!

for dn =0 (closed system)
.( 5 AR )
dU(T, P) ﬁ] dT+(£J dP = dg, +aw,,
—_— or ),— \oP ), —
O]

R

GadY 5 ) (@)
dU(T,V).: ﬂ] dr+(ﬂ] dv = dg,, +aw,,
= or ),— "\ov )— :

“divide through by ??” | math handout item #6

dU(T,P):[Z—UJ dT+[Z—j dpP

how to get ((7U 27?

) b
OV ) x— come other variabte 7Y

“divide through by dV holding X (something else) constant “

(aly(or) (& () (2

later special simplification if X=P or x=T
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two relationships for ideal gasses: we looked ahead (lect 4 slide #5)

« for any substance
dU, =g, =nCy dT and AU, =[nCy dT for a constant

« but for an ideal gas

volume process

dU =nC,dT and AU =nC, AT for ANY path (not only constant V process)

for ideal gas
C,=C,+R

monatomic ideal gas

ideal gas AU nC,AT for ANY path (not only constant V process)

ideal gas

~
dU, =dq, = nCvdT and AU, =|n CydT for a constant volume process
AU,y o0 =1C,dT and AU, . =nC, AT for ANY path (not only constant V process)
-
(general, w,, =0, dn=0) ideal gas
o av(r,V)=nCv dr+[glyj] av
d(TV)( JdT+[ )dV r
o but .
AU =dq - PAV first law o , monatomic:
U — | =0 E =‘?ml doesn't depend onV
v, = (ar] T =g, =nCydT ) oy only )
( 50] B U=nCydT
—| =nCy _
ar), U=nCv AT
dU=nCy .11+(5”] av even if V rjot constant (i.e any path)
Cle
U for AUK,%,Las along general path where
AU= "f 4 T)"”J‘(,TV] 4V | both T (const ) and V (const ) vary
i - AU=nCy AT AU =nada

no effect on U
8
let’s interpret C, vs C, (very general relationship) ~E&R 3.37
ou\ (ov v
i nCy=nC, +( ] ( ) +p(f]
recapitualting F% or ), oT),
nC,=nC, + )  pllv volume change .
v ), or ), per T change of 1
energy to energy to restore
raise T 1° raise T 1° energy
const P const V potential energy lost as
(vol changes as molecules P-V work
‘separate’ per unit per unit
volume change volume
change
« raising T 1° K requires increasing kinetic (and internal) energy of molecules
« at constant V, all +q increases kinetic (and internal) energy of molecules
« where does the heat energy go when we raise T at constant P ??
10

7
nCp=| % nCr ;(’qu
dr), Cp vs Cy (E&R,y, p.76) dr ),
for only P-V work and closed system (@w,,,, =0, dn=0)
dU=dq—P,dV for infintesimal change P, =P, =P
dg=dU + PdV »
divide by dT, V const nC 7[(741] *[au) [ o ( )
livide , V const V=l = o
4 ar ), ~\er o), \
dq v
divide by dT, Pconst "Cr = ar X -
express dU(T,V) dau(T,7) (ay]
now to get| — B
N N 5 or),
divide by dT, P const (ﬂ) =nC, (ﬂ] +(ﬂ) (ﬂ] interms of T,V
ar "\ar ), \ov ) \er/, >
Al
()2
ov ).\er,,
ou v v
w e ) (2 A
finally ! » o ) \ar ), P\or), 9
Cp vs C, for ideal gas
_ _ ) ]
nC, =nC, + (ﬂ) +P (ﬂ)
), or ),
for ideal gas
_ nRT
Energy, U is function of ONLY T, i.e. U=U(T)
(Z) =
so: o) P
ou
(oV] -0
nEP:nC [0+P]nR
P
nC, =nC, +nR
[ C,=C,+R forideal gas ]
"

experimental C,, and C; for selected gasses: how ‘good’ is C,=C,+nR ?

E-- R=8.31 J m°|-1 K.1

o et

= G ideal gas
8.30 1.66

‘Monatomic C,-C, =R
Monat N 12.7 208 812 1.64 . =
coatomle | — monatomic C, = 3 R
Monatomic ~ Ar 125 208 8.30 167 5
Diatomic | H, 20.4 28.8 8.45 1.41 diatomic C, = ER
Diatomic O, 21.0 29.3 832 1.40 Jmol™ K™
Diatomic N, 20.8 29.1 8.32 1.40 3 p_1247
Triatomic  H,0 27.0 35.4 8.35 1.31 5
—R=20.78
Polyatomic  CHy 271 354 836 131 2
7 ]
FR=2910 §

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2
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15t Law recapitulation

U = internal energy
du,, =dq,, +aw,, +dn, (n=number of moles; dn=0 for closed system)
dU,, =—dU. (energy conserved )

dU is exact differential

U is a state function completely general

for only P-V work and closed system (dn=0)
dU =dg—-P dV

ext

« Constant volume process dU,= dq, AU,=q,

enthalpy: q for process at constant Pressure

H=U+P,V  (definition of enthalpy, H)

since U is state function; and since P, V
are state variables, H is also a

STATE FUNCTION completely general

why a new state function you might ask??
dU, =dq, ; AU, =gq, heatatconstant volume
but most reactions and many physical
processes are carried out at constant P

desire state function for qp, heat at constant pressure

« Adiabatic process du=dw AU=w
13
enthaply: H, a state function for heat transfer at constant pressure
H=U+PV
dH =dU + PdV +VdP  (r, = P, for infinitesimal change dP)
dH =dq - PdV +aw,,, + PdV +VdP
dH =dq +VdP + dw,,,,
and at P=constantand aw,,, =0
dH, =dq,
AH, =q, as advertised !!
AH,=¢q, atconstPandnow,,
AH , >0 endothermic (heat gained by system)
AH , <0 exothermic (heat lost by system)
15
manipulating thermodynamic functions: fun and games
GOALS:
 Evaluate changs
expressions that can be evaluated in terms of
P,V,T or other directly measurable quantities.
17

14
AH ideal gas
_ /T
AHP =q,= J‘nC,,dT anPAT (general,forw,, =0,dn=0)
but for ideal gas
H=U+PV =U+nRT
dH =dU +nRdT  (general for ideal gas)
dH = nEVdT +nRdT (general for ideal gas, evenV not const)
dH =n(C, + R)dT
dH = nE,.dT IDEAL GAS ANYTIME,
EVEN IF P NOT CONSTANT
AH=nC,AT ideal gas general (for w,, =0, dn=0)
16
manipulating thermodynamic functions: fun and games
for example:
HW#2
12. Derive the following for any closed system,
with only P-V work:
v =7\ A | | A
ov ).\ ot ),
18
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small ‘cheat’ via ‘look ahead’ | g |

e

many of the results in E&R ch 3 use
the below [yet] ‘unproven’ result;
that we will derive later (using 2" Law)

class should use result in HW2 #13*

~

-
(in :T(i”] _p
ov ), “\er),

[eqn.3.19]
i j

E&R,, eqn.3.15

-

U(T,V): some manipulations and relationships (closed system)

du(r,v)= OUN ar+[%Y) av  ciosed systom, dw,,, =0
or ), o),

dU(T,V)=dq-PdV

O —
A
or ), \dr),

(33

(3)5)

definition of Cy: [

‘divide dU by dV,

holding T constant’:
aq P
— | seeyoulater
v

hmmm | —- | =
(dVl (01

but here we can also
use our ‘look ahead’:

to _ oP
dU(T,V)=nC,dT J{T(ﬁj - P}dV eqn 3.16, p 70 E&R | [eqns20ps1],,
”

E,,, P, T,V and dervivatives are all experimentally accessible 1

so finishing up for dU and dH:
from previous slide (aiJ = (61] (alj +V
oP ), op ) \ar

v v v
V(T,P) dV= (‘Tl .1r+(§l dp(aTl

L))

similar to HW#1 ot ),\er ), \ap ) \8T),
prob 1d-e ﬂ=[5lj +(6l] LPJ
or op ),\or ),

[ay]

aT ),
oH oV

(ET’J, =V- (a—rl eqn 3.40 E&R,, [3.44] ,

I3

dU(T,V)= nEVdT+|:T( = ] - P}dV eqn 316, p 70 E&R , [eansa0psi],,
orT ),

~

dH(T,P)=nC,dT + V—T(ﬂ P
or ),
23

total differential for U(T,V,n) and H(T,P,n)

u@y,n,n,,...n,)

dU = (6&] dT + {alj
orT )y, oV Jru

H(T,P,n,n,,..,n,)

dH:(a—H dT + aﬂ)
or ). oP ),

for now closed system all dn,=0

20

H(T,P): some manipulations and relationships (closed system)

|(6H/6T)P =C, (0H/oP), =?? interms of P,V,T and derivatives
dH(T,P):[—aHJ dT+[—5”) ap
ar op
start: g T

dH =dU + PdV +VdP closed system, dw,_ =0

) (3

‘divide dH by dP,

ot
holding T constant’: oP ),

chain rule:

almost fini 1! (aﬁlﬂ[”l(a—';l W can3A0EER,, [34],
22

C,,C,,P,T,V and dervivatives are all experimentally accessible

in section derive equation following equation
— — O )
nC, =nC, + ﬂ] -V (£]
oP ), or ),

start with
dU =dH — PdV —VdP
divide by dT with V constant
and then boogie along as we just did!!

24
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First Law: ideal gas calculations Lecture 5: GOALS
relationships that apply to ideal gasses for all conditions with w. =0 v P ,
and constant composition (some also apply more generally): o Some new math ‘tricks
v for ideal gas AU=n C,, AT along any path
AU=g+w Wy = —j P dV PV =nRT (even if V changes along path)
4= ”IC"dT qr =”.[CPdT c R v Derive Cp=C,+nR for ideal gas
? = 2 A%
=nC,AT =nC,AT .
! " v New state function enthalpy, H, AHp=qp
H=U+PV AU gy condiions =NCyAT | AH  oniiions = NCpAT . —
- v for ideal gas AH=n C, AT along any path
monatomic ideal gas G :ER C, ;R (even ifP changes along path)
P 2
v Use the mathematics of differentials to derive
2 only when C, or C, doesn’t depend on T ! relationships among thermodynamic variables
25 26
why is Cy larger for diatomic than for monatomic gas ?
activated at high T http://images.flatworldknowledge.com/
monatomic C,, = zR 1
) 05 °
. ) +
diatomic C,, = ER bending
non — linear polyatomic EV >3R [ = =]
v \ v v translational and rotational modes ke ke
END OF LECTURE 5 , e ReG B o
heat energy rotation | vibration
goes into translation active at 298K
(total)
—| monatomic 3 0 0(0)
—p | diatomic 3 2 o
—| polyatomic [ 3 3 |>0(N6) e
law-the-concepts
27
28




