Lecture 11 Chemistry 163B Winter 2020

 q_{rev} , Clausius Inequality and calculating ΔS for ideal gas P,V,T changes (HW#6)

Challenged Penmanship
Notes

statements of the Second Law of Thermodynamics

- 1. Macroscopic properties of an <u>isolated system</u> eventually assume constant values (e.g. pressure in two bulbs of gas_becomes constant; two block of metal reach same T) [Andrews. p37]
- 2. It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change in the surroundings. *Kelvin's Statement [Raff p 157]; Carnot Cycle*
- 3. It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. *Clausius's Statement, refrigerator*
- 4. In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process
 - ~ Caratheodory's statement [Andrews p. 58]

four steps to exactitude

I.
$$\varepsilon_{CARNOT[ideal\ gas]} = \frac{-w_{total}}{q_U} = 1 - \frac{T_L}{T_U} = 1 + \frac{q_L}{q_U}$$

II. $\varepsilon_{ANY\ REVERSIBLE\ 'TWO\ TEMPERATURE'\ MACHINE} = \varepsilon_{CARNOT\ [ideal\ gas]}$ or else violation of 2nd Law

III.
$$\oint \frac{dq_{rev}}{T} = 0 \quad \text{eqn 5.11(E & R)}_{3rd}; ??(E \& R)_{4th} \text{ demonstrated for ideal gas Carnot;}$$

$$\text{general proof for two temperature}$$

$$\text{reversible cycle;}$$

$$\text{see "a REALLY BIG RESULT" lecture 10 Slide 33}$$

$$\text{also (Dickerson p. 155; Raff p. 162-163)}$$

IV.
$$\oint_{cycle} \frac{dq_{rev}}{T} = 0$$
 for any reversible cyclic process

figure 5.16 E & R_{4th} (5.4 E & R_{3rd}) (Dickerson pp.156 - 159, Raff pp.163 - 164)

Entropy

$$dS = \frac{dq_{rev}}{T}$$
 is an exact differential

S is a state function

goals of lecture 11

1. Relate ΔS and q_{irrev}

- 2. Calculate ΔS for P,V, T changes of ideal gas (HW#6)
 - a. using REVERSIBLE path (q_{rev}) [even for irreversible processes]
 - b. using partial derivatives of S with respect to P, V, T [a look ahead]

entropy and heat for actual (irreversible processes): q_{irrev}

an *irreversible* (actual) *cyclic* engine ϵ_{irrev} coupled with a Carnot heat pump of ϵ_{C} will not violate 2^{nd} Law if $\epsilon_{irrev} < \epsilon_{C}$ (viz section; Lect10 S30)

$$\begin{array}{c|c} \hline \Delta U_{\text{cyclic}} = 0 \\ \hline -W_{\text{total}} = q_U + q_L \\ \text{for both rev} \\ \text{and irrev} \end{array} = \left(\begin{array}{c} -W_{\text{total}} \\ \hline q_U \end{array} \right)_{\text{irrev}} = \left(\begin{array}{c} q_U + q_L \\ \hline q_U \end{array} \right)_{\text{irrev}} = 1 + \frac{\left(q_L\right)_{\text{irrev}}}{\left(q_U\right)_{\text{irrev}}} < 1 - \frac{T_L}{T_U} = \mathcal{E}_{\text{reversible}} \\ \hline \frac{\left(q_L\right)_{\text{irrev}}}{\left(q_U\right)_{\text{irrev}}} < -\frac{T_L}{T_U} \\ \hline \frac{\Delta S_{\text{cyclic engine}}}{\left(q_U\right)_{\text{irrev}}} = \frac{\left(q_U\right)_{\text{rev}}}{T_U} + \frac{\left(q_L\right)_{\text{irrev}}}{T_L} = 0 \\ \hline \frac{\left(q_L\right)_{\text{irrev}}}{T_U} + \frac{\left(q_U\right)_{\text{irrev}}}{T_U} < 0 = \Delta S_{\text{cyclic engine}} (\text{reversible or irreversible}) \\ \hline \frac{dq_{rev}}{T} = dS \qquad \frac{dq_{irrev}}{T} < dS \qquad \frac{dq}{T} \leq dS \\ \hline \end{array}$$

2nd Law of Thermodynamics in terms of entropy

S is a STATE FUNCTION

•
$$\Delta S = \int_{rev} \frac{dq_{rev}}{T} > \int_{irrev} \frac{dq_{irrev}}{T}$$

E&R eqn 5.26_{4th} (5.33)_{3rd} Clausius inequality

Lecture 3: Pressure-Volume work reversible isothermal expansion; $P_{\text{ext}}=P_{\text{int}}$

Lecture 3: Isothermal expansion: P_{ext} = const ideal gas (irreversible)

EXAMPLE from early lectures: isothermal expansion

$$(P_1=10 \text{ atm}, T_1=300K, V_1) \rightarrow (P_2=1 \text{ atm}, T_2=300K, V_2)$$
initial \rightarrow final

same initial and final

$$\int \frac{dq}{T} = \frac{q}{T}$$
 for isothermal process

 ΔS

$$P_{ext} = P_{int};$$

$$q_{rev} = 5743 J \frac{q_{rev}}{T} = 19.14 J K^{-1}$$

$$P_{\text{ext}}$$
 = const 1 atm; q irrev = 2244 J $\frac{q_{irrev}}{T}$ = 7.48 J K⁻¹ $\stackrel{?}{>}$?

$$\Delta S = \int\limits_{\substack{initial \ some\ reversible\ path}}^{final} rac{ddq_{rev}}{T} \geq \int\limits_{\substack{initial \ some\ path}}^{final} rac{dq}{T}$$

to calculate ΔS must use reversible path initial \Rightarrow final

EXAMPLE from early lectures: isothermal expansion

$$(P_1=10 \text{ atm}, T_1=300\text{K}, V_1) \rightarrow (P_2=1 \text{ atm}, T_2=300\text{K}, V_2)$$
initial \rightarrow final

same initial and final

$$\int \frac{dq}{dt} = \frac{q}{t}$$
 for isothermal process

ΔS

$$P_{ext} = P_{int};$$

$$q_{rev} = 5743 J \frac{q_{rev}}{T} = 19.14 J K^{-1} 19.14 J K^{-1}$$

$$P_{\text{ext}}$$
 = const 1 atm; q irrev = 2244 J $\frac{q_{irrev}}{T}$ = 7.48 J K⁻¹ < 19.14 J K⁻¹

$$\Delta S = \int_{\substack{initial \ some\ reversible\ path}}^{final} \frac{dq_{rev}}{T} \geq \int_{\substack{initial \ some\ path}}^{final} \frac{dq}{T}$$

to calculate ΔS must use reversible path initial \Rightarrow final

 $\Delta S_{universe} \ge 0$

soon:

$$\Delta S_{system} + \Delta S_{surroundings} = \Delta S_{universe} \ge 0$$

disorder increases

calculating entropy (see summary on review handout)

Thermal properties of entropy and entropy calculations

$$\circ \quad dS = \frac{\vec{d} \ q_{rev}}{T} \, ; \quad \Delta S = \int \frac{\vec{d} \ q_{rev}}{T} \, ; \quad \oint \frac{\vec{d} \ q_{rev}}{T} = 0$$

○ $\Delta S \ge \int \frac{dq}{T}$; $0 \ge \oint \frac{dq}{T}$; (= for reversible process; > for spontaneous ['real'] process)

$$\circ \quad \Delta S_{total \equiv universe} = \Delta S_{system} + \Delta S_{surroundings} \geq 0$$

S is a state function; dS is an exact differential Dependence of S on

• T:
$$\left(\frac{\partial \overline{S}}{\partial T}\right)_{V} = \frac{\overline{C}_{V}}{T}$$
; $\left(\frac{\partial \overline{S}}{\partial T}\right)_{P} = \frac{\overline{C}_{P}}{T}$

• P:
$$\left(\frac{\partial \overline{S}}{\partial P}\right)_T = -\left(\frac{\partial \overline{V}}{\partial T}\right)_P$$

• V:
$$\left(\frac{\partial \overline{S}}{\partial \overline{V}}\right)_T = \left(\frac{\partial P}{\partial T}\right)_{\overline{V}}$$

■ Phase:
$$\Delta S = \frac{\Delta H_{equilibrium\ phase\ change}}{T_{equilibrium\ phase\ change}}$$

- o Calculation of entropy changes for changes in P, V, T, phase
- $_{\circ}$ Third Law and calculations using Third Law Entropies: $\overline{S}^{\, o}(T)$

$$\circ \quad \Delta S_{reaction}^{0}(T) = \sum_{i} \nu_{i} \overline{S}_{i}^{0}(T)$$

• Entropy of mixing:
$$\Delta S = -n_{total} R \sum_{i} X_{i} \ln X_{i}$$
 where $X_{i} = \frac{n_{i}}{n_{total}}$

look ahead - ΔS for changes in T,V; (always $\Delta S = \int_{-\infty}^{\infty} \frac{dq_{rev}}{T}$)

also:

S(T,V):

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$

coming very soon.

$$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{T}}\right)_{V} = \frac{n\overline{C}_{v}}{\mathbf{T}} \qquad \left(\frac{\partial \mathbf{S}}{\partial V}\right)_{T} = \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{V}$$

so:
$$dS = \frac{n\overline{C}_V}{T}dT + \left(\frac{\partial P}{\partial T}\right)_V dV$$
 always (no w_{other}, closed system)

$$dS = \frac{n\overline{C}_{V}}{T}dT + \frac{nR}{V}dV \quad \Delta S = \int_{\text{rev const } V \text{ path}} \frac{n\overline{C}_{V}}{T}dT + \int_{\text{rev const } T \text{ path}} \frac{nR}{V}dV$$

$$\Delta S = n\overline{C}_{v} \ln \left(\frac{T_{final}}{T_{initial}}\right) + nR \ln \left(\frac{V_{final}}{V_{initial}}\right) \quad \text{E\&R eqn 5.14}_{4th} \quad (5.18)_{3rd}$$

"qrev/T" T vary q_{rev}/T V vary const V path

const T path

look ahead- ΔS for changes in T,P; (always $\Delta S = \int_{T}^{J_{max}} \frac{dq_{rev}}{T}$)

also:

coming very soon.

$$S(T,P)$$
:

$$dS = \left(\frac{\partial S}{\partial T}\right)_{P} dT + \left(\frac{\partial S}{\partial P}\right)_{T} dP$$

$$\left(\frac{\partial S}{\partial T}\right)_{P} = \frac{n\overline{C}_{P}}{T} \qquad \left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$$

so:
$$dS = \frac{n\overline{C}_P}{T}dT - \left(\frac{\partial V}{\partial T}\right)_P dP$$
 always (no w_{other}, closed system)

$$dS = \frac{n\overline{C}_P}{T}dT - \frac{nR}{P}dP \quad \Delta S = \int_{\text{rev const } P \text{ path}} \frac{n\overline{C}_P}{T}dT - \int_{\text{rev const } T \text{ path}} \frac{nR}{P}dP$$

$$\Delta S = n\overline{C}_{P} \ln \left(\frac{T_{final}}{T_{initial}}\right) - nR \ln \left(\frac{P_{final}}{P_{initial}}\right) \quad \text{E\&R eqn 5.15}_{4th} \quad \text{(5.19)}_{3rd}$$

$$\text{``q}_{rev}/\text{T''} \quad \text{vary T} \qquad \text{``q}_{rev}/\text{T vary P}$$

const P path const T path

End of Lecture 11