Chemistry 163B Winter 2020, Lecture 11 Clausius Inequality and ΔS for an Ideal Gas

Lecture 11 Chemistry 163B Winter 2020

 \mathbf{q}_{rev} , Clausius Inequality and calculating ΔS for ideal gas P,V,T changes (HW#6)

> Challenged Penmanship Notes

statements of the Second Law of Thermodynamics

- 1. Macroscopic properties of an isolated system eventually assume constant values (e.g. pressure in two bulbs of gas become constant; two block of metal reach same T) [Andrews. p37]
- 2. It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change in the surroundings. Kelvin's Statement [Raff p 157]; Carnot Cycle
- 3. It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. Clausius's Statement, refrigerator
- In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process

~ Caratheodory's statement [Andrews p. 58]

four steps to exactitude

I.
$$\varepsilon_{CARNOT[ideal\ gas]} = \frac{-w_{total}}{q_U} = 1 - \frac{T_L}{T_U} = 1 + \frac{q_L}{q_U}$$

II. $\mathcal{E}_{ANY\,REVERSIBLE\,'TWO\,TEMPERATURE\,'\,MACHINE}=\mathcal{E}_{CARNOT\,[ideal\,gas]}$ or else violation of 2nd Law

or else violation of 2nd Law

III.
$$\oint_{\text{cycle}} \frac{dq_{\text{rev}}}{T} = 0 \quad \text{eqn 5.11(E \& R)}_{\text{3rd}}; ??(E \& R)_{\text{4th}} \text{ demonstrated for ideal gas Carnot;}$$
general proof for two temperature
reversible cycle;
see "a REALLY BIG RESULT" lecture 10 Slide 33

also (Dickerson p. 155; Raff p. 162-163) IV. $\oint \frac{d\mathbf{q}_{rev}}{\mathbf{r}} = 0$ for any reversible cyclic process

> figure 5.16 E & R_{4th} (5.4 E & R_{3rd}) (Dickerson pp.156 - 159, Raff pp.163 - 164)

Entropy

$$dS = \frac{dq_{rev}}{T}$$
 is an exact differential

S is a state function

goals of lecture 11

- 1. Relate ΔS and q_{irrev}
- 2. Calculate ΔS for P,V, T changes of ideal gas (HW#6) a. using REVERSIBLE path (q_{rev}) [even for

irreversible processes]

b. using partial derivatives of S with respect to P, V, T [a look ahead]

entropy and heat for actual (irreversible processes): $\mathbf{q}_{\text{irrev}}$

an *irreversible* (actual) *cyclic* engine ϵ_{irrev} coupled with a Carnot heat pump of ϵ_{c} will not violate 2^{nd} Law if $\epsilon_{irrev} < \epsilon_{c}$ (viz section; Lect10 S30)

BUT what about q_{irrev} with $\varepsilon_{irrev} < \varepsilon_C$??

Chemistry 163B Winter 2020 , Lecture 11 Clausius Inequality and ΔS for an Ideal Gas

EXAMPLE from early lectures: isothermal expansion
$$(P_1 = 10 \text{ atm}, T_1 = 300 \text{K}, V_1) \rightarrow (P_2 = 1 \text{ atm}, T_2 = 300 \text{K}, V_2)$$
 initial \rightarrow final
$$\int \frac{dq}{T} = \frac{q}{T} \text{ for isothermal process} \qquad \Delta S$$

$$P_{\text{ext}} = P_{\text{ini}}; \qquad q_{\text{rev}} = 5743 \text{ J} \quad \frac{q_{\text{rev}}}{T} = 19.14 \text{ J K}^{-1} \quad 19.14 \text{ J K}^{-1}$$

$$P_{\text{ext}} = \text{const 1 atm}; \quad q_{\text{irrev}} = 2244 \text{ J} \quad \frac{q_{\text{irrer}}}{T} = 7.48 \text{ J K}^{-1} < 19.14 \text{ J K}^{-1}$$

$$\Delta S = \int_{\text{initial some reversible path}}^{\text{final}} \frac{dq_{\text{rev}}}{T} \geq \int_{\text{initial some path}}^{\text{final}} \frac{dq}{T}$$
 to calculate ΔS must use reversible path initial \Rightarrow final
$$11$$

$$\Delta S_{universe} \geq 0$$
 soon :
$$\Delta S_{system} + \Delta S_{surroundings} = \Delta S_{universe} \geq 0$$

$$disorder\ increases$$

Chemistry 163B Winter 2020 , Lecture 11 Clausius Inequality and ΔS for an Ideal Gas

