Lecture 12 Chemistry 163B Winter 2020

△S of the **UNIVERSE**

and

Deriving Thermodynamic Relationships

Challenged Penmanship

Notes

1

goals

- 1. $\Delta S_{universe} > 0$
- 2. Maxwell-Euler Relationships
- 3. $\Delta S_{\Phi} = \Delta H_{\Phi} / T_{\Phi}$ (Φ is phase transtion)

2nd Law of Thermodynamics in terms of entropy

• S is a STATE FUNCTION

•
$$\Delta S = \int_{rev} \frac{dq_{rev}}{T} > \int_{irrev} \frac{dq_{irrev}}{T}$$

3

$$\Delta S_{universe} \ge 0$$

today

soon:

$$\Delta \mathbf{S}_{\mathit{system}} + \Delta \mathbf{S}_{\mathit{surroundings}} = \Delta \mathbf{S}_{\mathit{universe}} \geq 0$$

disorder increases

the entropy of the UNIVERSE increases

$$dS \ge \frac{dq}{T}$$

$$\Delta S_{system} \ge \int \frac{dq_{sys}}{T} \qquad \Delta S_{surr} \ge \int \frac{dq_{surr}}{T}$$

$$\Delta S_{system} + \Delta S_{surr} \ge \left[\int \frac{dq_{sys}}{T} + \int \frac{dq_{surr}}{T} \right]$$

$$dq_{surr} = ? dq_{sys}$$

$$\Delta S_{system} + \Delta S_{surr} \ge \left[\int \frac{dq_{sys}}{T} - \int \frac{dq_{sys}}{T} \right] =$$

$$\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = \Delta S_{??} = \Delta S_{\text{UNIVERSE}} \ge 0$$

5

the entropy of the UNIVERSE increases

$$dS \ge \frac{dq}{T}$$

$$\Delta S_{system} \ge \int \frac{dq_{sys}}{T} \qquad \Delta S_{surr} \ge \int \frac{dq_{surr}}{T}$$

$$\Delta S_{system} + \Delta S_{surr} \ge \left[\int \frac{dq_{sys}}{T} + \int \frac{dq_{surr}}{T} \right]$$

$$dq_{surr} = -dq_{sys}$$

$$\Delta S_{system} + \Delta S_{surr} \ge \left[\int \frac{dq_{sys}}{T} - \int \frac{dq_{sys}}{T} \right] = 0$$

$$\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = \Delta S_{??} = \Delta S_{\text{UNIVERSE}} \ge 0$$

remember

same initial and final states of system:

•
$$\Delta \mathbf{S} = \Delta \mathbf{S}_{reversible} = \Delta \mathbf{S}_{irreversible}$$

•
$$\Delta S = \int\limits_{initial}^{final} \frac{d \overline{q}_{reversible}}{T} \geq \int\limits_{initial}^{final} \frac{d \overline{q}}{T}$$

so how will reversible and irreversible processes between same initial and final states of system differ???

- $\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \equiv \Delta S_{\text{universe}} \geq 0$ (= for reversible, > for irreversible)
- $\Delta S_{surroundings}$ will differ

13

tools for evaluating thermodynamic relationships: starting relationships

definitions:

U ≡ internal energy

H ≡ U + PV

A ≡ U –TS G ≡ H –TS

relationships from 1st and 2nd Laws:

[no change of material $(dn_i=0)$ and, only PV work $(dw_{other}=0)$]

$$dq_V = n \, \bar{C}_V \, dT \qquad dq_P = n \, \bar{C}_P \, dT$$

$$dU = dq + dw = dq - PdV$$

$$dS = \frac{dq_{rev}}{T} \quad dq = Tds$$

differential relationships

U \equiv internal energy H \equiv U + PV A \equiv U -TS G \equiv H -TS dU = dq + dw = dq - PdV $dS = \frac{dq}{rev} \qquad dq = TdS$

$$dU = TdS - PdV \qquad U(\underline{S}, \underline{V})$$

$$TdS - PdV$$

$$dH = dU + PdV + VdP$$

$$dH = TdS + VdP \qquad H(\underline{S}, \underline{P})$$

$$TdS - PdV$$

$$dA = dU - TdS - SdT$$

$$dA = -SdT - PdV \qquad A(\underline{T}, \underline{V})$$

$$TdS + VdP$$

$$dG = dH - TdS - SdT$$

$$dG = -SdT + VdP \qquad G(\underline{T}, \underline{P})$$

15

example of Maxwell-Euler (dG=-S dT +V dP)

$$dG = -S$$
 $dT + V$ dP 1st and 2nd Laws $G(T,P)$:
$$dG = \left(\frac{\partial G}{\partial T}\right)_{P} dT + \left(\frac{\partial G}{\partial P}\right)_{T} dP$$
 math, total differential

SO:
$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S \text{ and } \left(\frac{\partial G}{\partial P}\right)_{T} = V$$

what about:
$$\left(\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial T}\right)_{P}\right)_{T} = \left(\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial P}\right)_{T}\right)_{P}$$

thus:
$$-\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P$$
 Maxwell-Euler Relationship from dG

Chemistry 163B Winter 2020 Lecture 12: ΔS_{LINIVERSE} and Thermodynamic Tools

Euler-Maxwell relationships (handout #5 Math Comments)

example (1st and 2nd Laws of Thermodynamics give dG as exact differential) d G (T,P) = -S dT + V dP (G and S are free energy and entropy)

THEN WE HAVE THE FOLLOWING USEFUL RELATIONSHIPS:

$$\left(\frac{\partial \psi}{\partial x}\right)_{y} = M \quad \text{and} \quad \left(\frac{\partial \psi}{\partial y}\right)_{x} = N$$

$$d\psi(x,y) = \left(\frac{\partial \psi}{\partial x}\right)_{y} dx + \left(\frac{\partial \psi}{\partial y}\right)_{x} dy$$

$$a. \quad \text{or} \qquad \qquad || \qquad || \qquad \qquad ||$$

$$\left(\frac{\partial G}{\partial T}\right)_{p} = -S \quad \text{and} \quad \left(\frac{\partial G}{\partial P}\right)_{T} = V$$

$$d\psi(x,y) = M \quad dx + N \quad dy$$

or
$$\| \left(\frac{\partial G}{\partial T} \right)_{P} = -S$$
 and $\left(\frac{\partial G}{\partial P} \right)_{T} = V$ $d\psi(x, y) = M \quad dx + N \quad dy$

b. and since, for well behaved functions, "mixed" second partial derivatives are equal (i.e. the order of differentiation does not matter)

$$\begin{pmatrix} \frac{\partial^2 \psi}{\partial y \partial x} \end{pmatrix}_{x,y} = \begin{pmatrix} \frac{\partial M}{\partial y} \end{pmatrix}_x = \begin{pmatrix} \frac{\partial N}{\partial x} \end{pmatrix}_y = \begin{pmatrix} \frac{\partial^2 \psi}{\partial x \partial y} \end{pmatrix}_{y,x}$$

$$\begin{pmatrix} \frac{\partial}{\partial y} \begin{pmatrix} \frac{\partial \psi}{\partial x} \end{pmatrix}_y \end{pmatrix}_x = \begin{pmatrix} \frac{\partial}{\partial x} \begin{pmatrix} \frac{\partial \psi}{\partial y} \end{pmatrix}_x \end{pmatrix}_y$$
 or
$$\begin{pmatrix} \frac{\partial(-S)}{\partial P} \end{pmatrix}_T = \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_P$$
 which is same as
$$\begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix}_T = -\begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_P$$

$$\begin{pmatrix} \frac{\partial M}{\partial y} \end{pmatrix}_x = \begin{pmatrix} \frac{\partial N}{\partial x} \end{pmatrix}_y$$

this is an example of the Maxwell-Euler relationships that we will use often

$$dU = TdS - PdV$$

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$dH = TdS + VdP$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

$$-\left(\frac{\partial S}{\partial V}\right)_{T} = -\left(\frac{\partial P}{\partial T}\right)_{V}$$

$$\left(\frac{\partial S}{\partial P}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{P}$$

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$$

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$$

18

entropy variations with T and P

$$\left(\frac{\partial \bar{S}}{\partial T}\right)_{V} = \frac{\bar{C}_{V}}{T}$$

$$\left(\frac{\partial \bar{S}}{\partial T}\right)_{P} = \frac{\bar{C}_{P}}{T}$$

$$\left(\frac{\partial \bar{S}}{\partial \bar{V}}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

$$\left(\frac{\partial \bar{S}}{\partial P}\right)_{T} = -\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}$$

19

finite changes from derivatives: isothermal volume change

$$dS(T,V) = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$

isothermal dT = 0

$$dS = \left(\frac{\partial S}{\partial V}\right)_T dV = \left(\frac{\partial P}{\partial T}\right)_V dV$$

general for no work other; no change of composition

$$\Delta S_{V_1 \to V_2, Tconst} = \int_{V_1}^{V_2} dS = \int_{V_1}^{V_2} \left(\frac{\partial S}{\partial V} \right)_T dV = \int_{V_1}^{V_2} \left(\frac{\partial P}{\partial T} \right)_V dV$$

$$\Delta S_{V_1 \to V_2} = \int_{V_1}^{V_2} dS = \int_{V_1}^{V_2} \left(\frac{\partial P}{\partial T} \right)_V dV$$

$$\Delta S_{V_1 \to V_2} = \int_{V_1}^{V_2} \frac{nR}{V} dV = nR \ln \frac{V_2}{V_1}$$

for ideal gas: $\left(\frac{\partial P}{\partial T}\right)_{V} = \frac{nR}{V}$

[note: same as $\Delta S_{V_1 \rightarrow V_2} = \frac{q_{rev}}{T}$, q_{rev} for isothermal volume change]

calculating entropy (see summary on review handout)

- $\label{eq:second_second_second} \begin{array}{ll} \checkmark & \circ & \Delta S_{\text{nonli} \equiv \text{numbers}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundingr}} \geq 0 \\ \checkmark & \circ & S \text{ is a state function; } dS \text{ is an exact differential } \\ \circ & \text{Dependence of S on} \\ \checkmark & \bullet & \text{T:} \left(\frac{\partial \overline{S}}{\partial T} \right)_p = \frac{\overline{C}_p}{T}; \ \left(\frac{\partial \overline{S}}{\partial T} \right)_p = \frac{\overline{C}_p}{T} \end{array}$
- - Calculation of entropy changes for changes in P, V, T, phase
 - Third Law and calculations using Third Law Entropies: $\overline{S}^{o}(T)$

 - $\circ \quad \text{Entropy of mixing: } \Delta S = -n_{\text{\tiny notal}} R \sum_i X_i \ln X_i \quad \text{ where } X_i = \frac{n_i}{n_{\text{\tiny notal}}}$

21

△S for equilibrium phase transition

for phase transition ϕ at equilibrium conditions

(e.g.)
$$H_2O(\ell) \rightleftharpoons H_2O$$
 (g, 1atm, 373K)

or
$$H_2O(\ell) \rightleftarrows H_2O$$
 (s, 1atm, 273K)

$$\left(\Delta \boldsymbol{H}_{\phi}\right)_{P} = \boldsymbol{q}_{reversible}$$

$$\left(\Delta S_{\phi}\right)_{P} = \frac{\left(\Delta H_{\phi}\right)_{P}}{T_{\phi}}$$

HW5 #35 Δ S for H₂O(ℓ) \rightarrow H₂O (s, 1atm, 263K)

Thermodynamics and Black Holes (and other cosmology?)

Thermodynamics of Black Holes

Eric Monkman, Matthew J. Farrar

Department of Physics and Astronomy McMaster University, Hamilton, ON L8S 4M1 2007 03 29

25

$\Delta S_{universe} < 0????$

- system with entropy S falls into black hole (r < r_s)
- whole system gets sucked into black hole→ includes entropy
- what happens to the entropy of the universe?
- What happened to the 2nd law of thermodynamics???

Chemistry 163B Winter 2020 Lecture 12: ΔS_{UNIVERSE} and Thermodynamic Tools

Striking Similarity

- 2nd Law of Thermodynamics: dS ≥ 0
 - Hawking Area Theorem: dA ≥ 0
- a coincidence? Bekenstein, 1973, says "no"
- Hawking, Bekenstein derived entropy of black hole:

 $S_{BH} = A/4$

Generalized Second Law (GSL)

- In words:
- "The common entropy in the black-hole exterior plus the black-hole entropy never decreases."

 Bekenstein, J. Black Holes and Entropy, *Phys. Rev. D.*, 7, 2333, (1973).
 - In math:
 - $\Delta S_{BH} + \Delta S_c \ge 0$ (S_c is common entropy to the exterior)