Lecture 12 Chemistry 163B Winter 2020	
and	
Deriving Thermodynamic Relationships	
Challenged Penmanship	
Notes	
	1

U ≡ internal energy	dU = dq + dw = dq - PdV
H = U + PV A = U –TS G = H –TS	$dS = \frac{d\bar{q}_{rev}}{T} d\bar{q} = TdS$
dU = TdS - PdV $TdS - PdV$ $dH = dU + Pd$	$\frac{dV}{V + VdP} = U(\underline{S}, \underline{V})$
dH = TdS + Vd $TdS - PdV$ $dA = dU - TdA$	$\frac{dP}{S-SdT} = H(\underline{S},\underline{P})$
dA = -SdT - T $TdS + VdP$ $dG = dH - TdA$	$P\underline{dV} \qquad A(\underline{T},\underline{V})$ $S - SdT$
$dG = -S\underline{dT} + $	$Vd\underline{P} = G(\underline{T},\underline{P})$

Generalized Second Law (GSL)

In words:

 "The common entropy in the black-hole exterior plus the black-hole entropy never decreases." Bekenstein, J. Black Holes and Entropy, *Phys. Rev. D.*, 7, 2333, (1973).

In math:

• $\Delta S_{BH} + \Delta S_c \ge 0$ (S_c is common entropy to the exterior)