

| Substance                      | $\Delta \mathbf{H}^{o}_{\mathbf{f}}$<br>$\Delta H_{\mathbf{f}}^{o}$ (kJ mol <sup>-1</sup> ) | $\Delta \mathbf{G}^{o}_{f}$<br>$\Delta G_{f}^{\circ} (\mathbf{kJ} \operatorname{mol}^{-1})$ | <b>S</b> <sup>0</sup><br><i>S</i> ° ( <b>J</b> mol <sup>-1</sup> K <sup>-1</sup> ) | $C^{\circ}_{P,m} \; ({ m J} \; { m mol}^{-1} \; { m K}^{-1})$ | Atomic or<br>Molecular<br>Weight (am |
|--------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|
| Carbon                         |                                                                                             |                                                                                             |                                                                                    |                                                               |                                      |
| Graphite(s)                    | 0                                                                                           | 0                                                                                           | 5.74                                                                               | 8.52                                                          | 12.011                               |
| Diamond(s)                     | 1.89                                                                                        | 2.90                                                                                        | 2.38                                                                               | 6.12                                                          | 12.011                               |
| C(g)                           | 716.7                                                                                       | 671.2                                                                                       | 158.1                                                                              | 20.8                                                          | 12.011                               |
| CO(g)<br>Hydrogen              | -110.5                                                                                      | -137.2                                                                                      | 197.7                                                                              | 29.1                                                          | 28.011                               |
| H <sub>2</sub> (g)             | 0                                                                                           | 0                                                                                           | 130.7                                                                              | 28.8                                                          | 2.016                                |
| $H_2O(g)$                      | -241.8                                                                                      | -228.6                                                                                      | 188.8                                                                              | 33.6                                                          | 18.015                               |
| $H_2O(l)$                      | -285.8                                                                                      | -237.1                                                                                      | 70.0                                                                               | 75.3                                                          | 18.015                               |
| $H_2O(s)$                      |                                                                                             |                                                                                             | 48.0                                                                               | 36.2 (273 K)                                                  | 18.015                               |
| $H_2O_2(g)$                    | -136.3                                                                                      | -105.6                                                                                      | 232.7                                                                              | 43.1                                                          | 34.015                               |
| $H^+(aq)$                      | 0                                                                                           | 0                                                                                           | 0                                                                                  |                                                               | 1.008                                |
| OH <sup>-</sup> (aq)<br>Oxygen | -230.0                                                                                      | -157.24                                                                                     | -10.9                                                                              |                                                               | 17.01                                |
| O <sub>2</sub> (g)             | 0                                                                                           | 0                                                                                           | 205.2                                                                              | 29.4                                                          | 31.999                               |
| O(g)                           | 249.2                                                                                       | 231.7                                                                                       | 161.1                                                                              | 21.9                                                          | 15.999                               |
| O3(g)                          | 142.7                                                                                       | 163.2                                                                                       | 238.9                                                                              | 39.2                                                          | 47.998                               |
| OH(g)                          | 39.0                                                                                        | 34.22                                                                                       | 183.7                                                                              | 29.9                                                          | 17.01                                |
| OH (aq)                        | -230.0                                                                                      | -157.2                                                                                      | -10.9                                                                              |                                                               | 17.01                                |





| $\Delta S_E (90.20 \rightarrow 298.15)$                                       | 35.27                                                     |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| $\Delta \overline{S}_{\phi}(\ell \to g \text{ at } 90.20\text{K})$            | 75.59                                                     |  |
| $\Delta \overline{S}_{D} (54.39 \rightarrow 90.20)$                           | 27.06                                                     |  |
| $\Delta \overline{S}_{\phi} (\mathbf{I} \to \ell \text{ at } 54.39 \text{K})$ | 8.181                                                     |  |
| $\Delta \overline{S}_{c} (43.76 \rightarrow 54.39)$                           | 10.13                                                     |  |
| $\Delta \overline{S}_{\phi}(\text{II} \rightarrow \text{I at 43.76K})$        | 16.98                                                     |  |
| $\Delta \overline{S}_{B} (23.66 \rightarrow 43.76)$                           | 19.61                                                     |  |
| $\Delta \overline{S}_{\phi}(\text{III} \rightarrow \text{II at 23.66K})$      | 3.964                                                     |  |
| $\Delta \overline{S}_{A}(0 \rightarrow 23.66)$                                | 8.182 (1.534+6.649)                                       |  |
| $\overline{S}(0K)$                                                            | 0                                                         |  |
|                                                                               | $\Delta \overline{S} J \mathbf{K}^{-1} \mathbf{mol}^{-1}$ |  |





| subst             | ances wit                      | th highe                      | er mas     | s have                            | (-)                                                         |
|-------------------|--------------------------------|-------------------------------|------------|-----------------------------------|-------------------------------------------------------------|
| S° 2              | F <sub>2</sub> (g) <<br>202.78 | Cl <sub>2</sub> (g)<br>223.07 | < B<br>24: | r <sub>2</sub> (g) < 1<br>5.46 26 | <sub>2</sub> (g)<br>50.69 JK <sup>-1</sup> mol <sup>-</sup> |
| (mor              | e closely sp                   | aced rota                     | ational a  | nd vibratior                      | nal levels)                                                 |
| ,                 |                                |                               |            |                                   | ,                                                           |
| more              | rigid sub                      | stances                       | s have     |                                   |                                                             |
|                   | C(gr)                          | C(dia)                        |            |                                   |                                                             |
| S° <sub>298</sub> | 5.74                           | 2.377                         | J K⁻¹m     | 10l <sup>-1</sup>                 |                                                             |
| more              | complex                        | substa                        | nces I     | nave                              |                                                             |
|                   | HF (g)                         | $H_2$                         | O (g)      | $D_2O(g)$                         |                                                             |
| MW                | 20                             | 1.                            | 3          | 20                                | amu                                                         |
| <u></u>           | 173 78                         | 18                            | 8 83       | 108 34                            | $J K^{-1} mol^{-1}$                                         |

| Subsia             | nces with   | ו higher m            | 1ass have             | higher             | S                                   |
|--------------------|-------------|-----------------------|-----------------------|--------------------|-------------------------------------|
| F                  | 2 (g) <     | Cl <sub>2</sub> (g) < | Br <sub>2</sub> (g) < | I <sub>2</sub> (g) |                                     |
| S°298 20           | 2.78 2      | 23.07                 | 245.46                | 260.69             | J K <sup>-1</sup> mol <sup>-1</sup> |
| (more              | closely spa | aced rotation         | al and vibrat         | ional leve         | els)                                |
|                    |             |                       |                       |                    |                                     |
| more r             | igid subs   | tances ha             | ve lower              | S                  |                                     |
|                    | C(ar)       | C(dia)                |                       |                    |                                     |
| ~                  |             |                       | 1                     |                    |                                     |
| S <sup>2</sup> 298 | 5.74        | 2.311 JK              | .'' <i>moi</i> ''     |                    |                                     |
| more               | omnley o    | substance             | s have hi             | ahor S             |                                     |
|                    |             |                       |                       |                    |                                     |
|                    | HF (g)      | H <sub>2</sub> O (g   | ) $D_2 O(g$           | 1)                 |                                     |
|                    | 20          | 18                    | 20                    | amu                |                                     |
| MW                 | 20          |                       |                       |                    |                                     |









































