Chemistry 163B Winter 2020 Lecture 14 Free Energy, Introduction, Spontaneity

Lecture 14 Chemistry 163B Free Energy **ESR** (≈ ch 6)

spontaneity (system + surroundings)

$$\Delta S \ge \int \frac{dq}{T}$$

$$\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr} \ge 0$$

goal: Define function which allows evaluation of spontaneity in terms of state functions of SYSTEM (only)

2

2

goals of lecture

1

3

- · define Gibbs (G) and Helmholtz (A) free energies
- show $\Delta G_{T,P}$ < 0 and $\Delta A_{T,V}$ < 0 for spontaneity
- · differentials for dG and dA
- temperature and pressure dependence of G, A
- · what's 'free' about free energy

3

5

6

spontaneity

$$\frac{\Delta S_{sys} \geq \frac{T_{sys}}{T}}{T}$$

$$\Delta S_{sys} - \frac{q_{sys}}{T} \ge 0$$

$$q_{...} = -q_{...}$$

$$\Delta S_{\rm sys} + rac{q_{\it surr}}{T} \ge 0$$

motivation for G (spontaneity at const T,P in terms of system)

$$\Delta S_{sys} + \frac{-q_{sys}}{T} \ge 0$$

spontaneity at const T,P

$$\begin{split} \left(q_{_{\nabla T}}\right)_{p} &= \Delta H_{p} \quad (dm_{_{Other}} = 0) \\ \Delta S_{_{\nabla T}} &+ \frac{-\Delta H_{p}}{T} \geq 0 \\ &T \Delta S_{_{\nabla T}} - \Delta H_{p} \geq 0 \end{split}$$

 $\Delta H_P - T\Delta S_{res} \leq 0$ define: $G \equiv H - TS$ (general, even if T, P not constant)

$$\Delta G_{T,P} = \left(\Delta H_{T,P}\right)_{sys} - T\Delta S_{sys} \le 0$$
spontaneity for constant T, P ($\vec{a}_{\text{wother}} = 0$)

motivation for, A

$$\Delta S_{sys} + \frac{-q_{sys}}{T} \ge 0$$

spontaneity at const T,V

$$\begin{split} \left(q_{\eta\eta}\right)_{\Gamma} &= \Delta U_{\Gamma} \ \, (d w_{\text{other}} = \theta) \\ \Delta S_{\eta\eta} &+ \frac{-\Delta U_{\Gamma}}{T} \geq 0 \\ T \Delta S_{\eta\eta} &- \Delta U_{\Gamma} \geq 0 \\ \Delta U_{\Gamma} &- T \Delta S_{\eta\eta} \leq 0 \end{split}$$

define: $A \equiv U - TS$ (general, even if T, V not constant)

$$\Delta A_{T,V} = \left(\Delta U_{T,V}\right)_{_{3y3}} - T\Delta S_{_{3y3}} \leq 0$$
 spontaneity for constant T,V ($\mathfrak{A}_{_{\mathbf{wother}}} = 0$)

Chemistry 163B Winter 2020 Lecture 14 Free Energy, Introduction, Spontaneity

summarv

Definitions: $A \equiv U-TS$ $G \equiv H-TS$

Spontaneity (in terms of properties of system):

 $\Delta A_{T,V} \le 0$ (no w_{other}) $\Delta G_{T,P} \le 0$ (no w_{other})

7

9

11

7

what's 'good for spontaneity'; similarly for ΔA at const T,V

 $\Delta A_{T,V} = \Delta U - T \Delta S \le \theta$

spontaneous: ΔU < 0; ΔS>0 ⇒ΔA<0

 $\Delta U_{sys} < 0$ exothermic:

disorders surroundings

 $\Delta S_{sys} > 0$

disorders system

what's 'good for spontaneity'

$$\Delta G_{T,P} = \Delta H - T \Delta S \leq \theta$$

spontaneous: $\Delta H < 0$ and $\Delta S > 0 \rightarrow \Delta G < 0$

Why "good for spontaneity"?

ΔH_{sys} < 0 exothermic:

disorders surroundings

 $\Delta S_{sys} > 0$

disorders system

8

 $\Delta G_{T,P} = \Delta H - T \Delta S$ ΔH < 0 ? $T\Delta S$ ΔΗ ΔS Spontaneous ?? yes !! (exothermic: disorders surr) (disorders sys) no !! (reverse spontaneous) (endothermic: orders surr) (orders sys) maybe !! (exothermic: disorders surr) (orders sys) maybe !! (endothermic: orders surr) (disorders sys) 10

10

8

 $\Delta G_{T,P}=0$

9

 $\Delta G_{T,P} = \Delta H - T \Delta S = \theta$ for reversible, equilibrium process

example: equilibrium phase transition

$$\Delta G_{T,P} = \Delta H_{\phi} - T_{\phi} \Delta S_{\phi} \quad \text{with } \Delta S_{\phi} = \frac{\Delta H_{\phi}}{T_{\phi}}$$
$$= \Delta H_{\phi} - T_{\phi} \left(\frac{\Delta S_{\phi}}{T_{\phi}}\right) = 0$$

[HW5 problem #35, sign of ΔG for T 'around' T_{ϕ}]

differential relationships and Maxwell-Euler

 $\begin{array}{ll} \mathbb{U} \equiv \text{internal energy} \\ \mathbb{H} \equiv \mathbb{U} + \mathbb{PV} \\ \mathbb{A} \equiv \mathbb{U} - \mathbb{TS} \\ \mathbb{G} \equiv \mathbb{H} - \mathbb{TS} \end{array} \qquad \begin{array}{ll} dU = dq + dw = dq - PdV \\ dS = \frac{dq_{rev}}{T} \quad dq = TdS \end{array}$

 $dU = TdS - PdV \qquad U(S,V)$ TdS - PdV dH = dU + PdV + VdP $dH = TdS + VdP \qquad H(S,P)$ TdS - PdV dA = dU - TdS - SdT $dA = -SdT - PdV \qquad A(T,V)$ TdS - VdP dG = dH - TdS - SdT $dG = -SdT + VdP \qquad G(T,P)$

 $\left(\frac{\partial V}{\partial V} \right)_{S} = \left(\frac{\partial S}{\partial S} \right)_{V}$ $\left(\frac{\partial T}{\partial P} \right)_{S} = \left(\frac{\partial V}{\partial S} \right)_{P}$ $\left(\frac{\partial S}{\partial V} \right)_{T} = \left(\frac{\partial P}{\partial T} \right)_{V}$ $\left(\frac{\partial S}{\partial P} \right)_{T} = -\left(\frac{\partial V}{\partial T} \right)_{P}$

Chemistry 163B Winter 2020 Lecture 14 Free Energy, Introduction, Spontaneity

16

why "free" energy (E&R eqn 6.10_{4th} 6.9_{3rd}) $\Delta S_{sys} + \frac{-q_{sys}}{T} \ge 0$ spontaneity at const T,P $(q_{vr})_p = \Delta H_p \quad (\vec{a}w_{other} = 0)$ $(q_{vr})_p + w_{other} = \Delta H_p \quad (\vec{a}w_{other} \ne 0)$ $\Delta S_{vr} + \frac{-(\Delta H_p - w_{other})}{T} \ge 0$ $T\Delta S_{vr} - \Delta H_p + w_{other} \ge 0$ $\Delta H_p - T\Delta S_{vr} - w_{other} \le 0$ $\Delta G_{T,P} - w_{other} \le 0 \quad (\text{eqn 6.10 E&R}_{1th})$

13 14

 $\mathbf{G} \equiv \mathbf{H} - \mathbf{T} \mathbf{S}$ $\Delta G_{T,P} = \left(\Delta H_{T,P}\right)_{\eta\tau} - T\Delta S_{\eta\tau} \leq 0$ $spontaneity for constant T, P (d_{weber} = 0)$ $\Delta G_{T,P} \leq w_{ather}$ $\Delta A_{T,V} \leq w_{ather}$ $\Delta A_{T,V} \leq w_{ather}$

15

temperature and pressure dependence of G, A (no w_{other})

G: T dependence at constant P $\left(\frac{\partial G}{\partial T}\right)_{p} \quad dG = -SdT + VdP \quad \Longrightarrow \quad \left(\frac{\partial G}{\partial T}\right)_{p} = -S \quad \left(\frac{\partial \overline{G}}{\partial T}\right)_{p} = -\overline{S}$ G: P dependence at constant T $\left(\frac{\partial G}{\partial P}\right)_{T} \quad dG = -SdT + VdP \quad \Longrightarrow \quad \left(\frac{\partial G}{\partial P}\right)_{T} = V \quad \left(\frac{\partial \overline{G}}{\partial P}\right)_{T} = \overline{V}$

 $dA = -SdT - PdV \longrightarrow \left(\frac{\partial A}{\partial T}\right)_{\Gamma} = -S \left(\frac{\partial A}{\partial V}\right)_{\Gamma} = -P$

and $\Delta G_{reaction}$ for chemical reaction (HW 6) $\Delta G_{reaction} = \sum_{i} v_{i} \left(\Delta \overline{G}_{f} \right)_{i}^{i} \quad [molar \ free \ energy \ of \ formation, in a moment and Appendix \ A]$ $\left(\frac{\partial \overline{G}}{\partial T} \right)_{p} = -\overline{S} \qquad \qquad \left(\frac{\partial \overline{G}}{\partial P} \right)_{\Gamma} = \overline{V}$ $\left(\frac{\partial \Delta G_{reaction}}{\partial T} \right)_{p} = -\Delta S_{reaction} \qquad \left(\frac{\partial \Delta G_{reaction}}{\partial P} \right)_{\Gamma} = \Delta V_{reaction}$ $\Delta S_{reaction} = \sum_{i} v_{i} \overline{S}_{i} \qquad \qquad \Delta V_{reaction} = \sum_{i} v_{i} \overline{V}_{i}$ $\left(\frac{\partial \Delta G_{reaction}}{\partial T} \right)_{p} = \sum_{i} v_{i} \left(\frac{\partial \overline{G}_{i}}{\partial T} \right)_{p} = \sum_{i} v_{i} \left(-\overline{S}_{i} \right) = -\Delta \overline{S}_{reaction} \quad \text{'proof'}$

Chemistry 163B Winter 2020 Lecture 14 Free Energy, Introduction, Spontaneity

 $\Delta G_{\textit{reaction}}$ and equilibrium (first pass)

here $\Delta G \equiv \Delta G_{reaction}$

- 1. $\Delta G < 0$ spontaneous ('natural', irreversible) $\Delta G = 0$ equilibrium (reversible) ΔG > 0 spontaneous in reverse direction
- 2. $\Delta G_T = \Delta H T \Delta S$
- 3. ΔG^o all reactants and products in standard states
- 4. $\Delta \bar{G}_f^0 \equiv \bar{G}_f^0$ Appendix A at 298.15K (reaction where reactants are elements in their most stable form and in their standard states, P=1 atm, [conc]=1M, etc) $\Delta \bar{G}_f^0 \Big(O_2(g) \Big) \equiv 0 \quad \Delta \bar{G}_f^0 \Big(C(gr) \Big) = 0$

$$\Delta G_{\scriptscriptstyle nocton}^0 = \sum_i
u_i \Delta ar{H}_f^0 - T \sum_i
u_i ar{S}_i^0$$

 $\Delta G_{reaction}^{0} = \Delta H_{reaction}^{0} - T \Delta S_{reaction}^{0}$

NOTE: in Appendix A: $\Delta \bar{G}^0_f$ and $\Delta \bar{H}^0_f$ in kJ mol -1 BUT \bar{S}^0 in J K -1 mol -1

goals of lecture √ define Gibbs (G) and Helmholtz (A) free energies \checkmark show ΔG_{T,P} < 0 and ΔA_{T,V} < 0 for spontaneity ✓ differentials for dG and dA √ temperature and pressure dependence of G, A what's 'free' about free energy 20

20

19

End of Lecture 14

21

spontaneity (argument II)

$$\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr} \ge 0$$

$$\boldsymbol{q}_{sys} = -\boldsymbol{q}_{surr}$$

statement: the surroundings are so 'massive' that any transfer of heat from system appears reversible to surroundings

thus:
$$\left(q_{surr}
ight)_{rev}=-q_{sys}$$
 $\Delta S_{surr}=rac{\left(q_{surr}
ight)_{rev}}{T}=-rac{q_{sys}}{T}$

and thus: $\Delta S_{\rm sys} + \frac{-q_{\rm sys}}{T} \geq 0$

22

21