

## partial molar quantities (systems of variable composition)

system of $\mathrm{n}_{1}$ moles substance $1, \mathrm{n}_{2}$ moles substance 2 ,. $\Omega$ some extensive property of system (volume, free energy, etc)
$\bar{\Omega}_{i}=\left(\frac{\partial \Omega_{\text {potal }}}{\partial n_{i}}\right)_{\underline{T, P}, n_{j}, n_{i}}$
partial molar $\Omega$ " for component $i$
contribution of substance $i$ to property $\Omega$ at T, P when other components present at concentrations $\mathrm{n}_{\mathrm{j}}$ "molar $\Omega$ " in presence of other species

## PARTIAL MOLAR QUANTITIES

In a system that contains at least two substances, the total value of any extensive property of the system is the sum of the contribution of each substance to that property.

The contribution of one mole of a substance to the volume of a mixture is called the partial molar volume of that component.
$V=f\left(p, T, n_{A}, n_{B} \cdots\right)$

$$
\text { At constant } T \text { and } p
$$

$$
V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{p, T, n \neq A}
$$



## PARTIAL MOLAR VOLUME



Composition remains essentially unchanged. In this case:
$V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{p, T, n \neq A} \quad \begin{aligned} & \text { can be considered constant and the volume change } \\ & \text { of the mixture is } n_{A} V_{A} . \text { Likewise for addition of } B .\end{aligned}$
The total change in volume is $n_{A} V_{A}+n_{B} V_{B}$. (Composition is essentially unchanged).
Scoop out of the reservoir a sample containing $n_{A}$ of $A$ and $n_{B}$ of $B$ its volume is $n_{A} V_{A}+n_{B} V_{B}$. Because $V$ is a state function:

$$
V=V_{A} n_{A}+V_{B} n_{B}+\ldots \quad{ }_{6}
$$

## Lecture 16 Multicomponent Systems and Partial Molar Quantities

## PARTIAL MOLAR VOLUME

Illustration:
What is the change in volume of adding 1 mol of water to a large volume of water?

$$
\begin{aligned}
& \text { The change in } \\
& \text { volume is } 18 \mathrm{~cm}^{3}
\end{aligned} \quad V_{\mathrm{H}_{2} \mathrm{O}}=\left(\frac{\partial V}{\partial n_{\mathrm{H}_{2} \mathrm{O}}}\right)_{p, T}=18 \mathrm{~cm}^{3}
$$

A different answer is obtained if we add 1 mol of water to a large volume of ethanol.

## PARTIAL MOLAR QUANTITIES

$V_{\mathrm{A}}$ is not generally a constant; it is a function of composition:


## partial molar quantities in biology



10
five important factoids about partial molar quantities

## partial molar factoids \#1 total differentials

1. state function differentials for systems of variable composition
(still $\sigma_{\text {wother }}=0$ )
$U\left(S, V, n_{1}, \ldots ., n_{N}\right) \quad d U=T d S-P d V+\sum_{i=1}^{N}\left(\frac{\partial U}{\partial n_{i}}\right)_{\underline{S V n_{i}=n_{i}}} d n_{i}$
$H\left(S, P, n_{1}, \ldots, n_{N}\right) \quad d H=T d S+V d P+\sum_{i=1}^{N}\left(\frac{\partial H}{\partial n_{i}}\right)_{S, P, n_{i}=m_{i}} d n_{i}$
$A\left(T, V, n_{1}, \ldots, n_{N}\right) \quad d A=-S d T-P d V+\sum_{i=1}^{N}\left(\frac{\partial A}{\partial n_{i}}\right)_{T Y n_{i}=n_{i}} d n_{i}$
$G\left(T, P, n_{1}, \ldots ., n_{N}\right) \quad d G=-S d T+V d P+\sum_{i=1}^{N}\left(\frac{\partial G}{\partial n_{i}}\right)_{\underline{T, P, n_{i}=n_{i}}} d n_{i}$

factoid \#4: relationships among partial molar quantities
2. Relationships among thermodynamic quantities derived for one-component systems often hold for partial molar quantities
examples:
$\boldsymbol{G} \equiv \boldsymbol{H}-\boldsymbol{T S} \Rightarrow \overline{\boldsymbol{G}}_{i}=\overline{\boldsymbol{H}}_{i}-\boldsymbol{T} \overline{\boldsymbol{S}}_{i}$
$H \equiv U+P V \quad \Rightarrow \quad \bar{H}_{i}=\bar{U}_{i}+P \bar{V}_{i}$
[proof in class for G ; students do similar proof for H ]


Chemistry 163B, Winter 2020
Lecture 16 Multicomponent Systems and Partial Molar Quantities


