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Lecture 26 Chemistry 163B Winter 2020

Concluding Factoids 

and 

Comments
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neuron, resting potential

http://projects.gw.utwente.nl/pi/sim/Bovt/concep4.gif

http://www.uta.edu/biology/westmoreland/classnotes/1442/Chapter_48_files/image009.jpg
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resting potential and Nernst Equaiton
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major source of potential: [K+]outside(Cout)  [K+]inside(Cin)

The computed number is a little higher than the quantity measured
in experiments (-70 mV) but all the factors in this complex physical process 
have been accounted for. http://www.medicalcomputing.net/action_potentials.html
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Gibbs-Duhem

the partial molar quantities do not vary independently

vocabulary
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Gibbs-Duhem
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non-ideal solutions
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benzene-toluene, quite ideal  (similar to Fig 9.2 E&R) !!

http://www.chem.ucsb.edu/coursepages/06fall/1C-Watts/dl/Lecture_Notes/Lecture16.%2011-8-06Colligative%20Properties%20Solutions.pdf
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 Raoult's Law of Ideal Solutions
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ideal solution: T vs X (P=1 atm) for solution-vapor equilibrium

toluene (b.p.=383.78) + benzene (b.p.=353.25)

tol+ben (solution)
[fremaining=2]

tol+ben (vapor)
[fremaining=2]
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non-ideal solutions:  azeotrope

Definition[s]:

• constant boiling liquid 

• solution where the mole fraction of each component 
is the same in the liquid (solution) as the vapor

• boiling point of azeotrope may be higher or lower   
than of pure liquids

( ) ( )v
i iX X=
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non-ideal solutions: positive deviations from ideal solution (E&R4th pp252-254 214-2183rd)

• positive deviations from 
Raoult’s Law:
smaller forces between
components than ‘within’
components

• total pressure greater than
ideal solution

CS2 () + (CH3)2CO () 
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acetone-carbon disulfide: positive deviation  low boiling azeotrope

http://www.separationprocesses.com/Distillation/Fig011b.htm
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low boiling azeotrope

• weaker between component forces 
(A↔B) (than A ↔A, B ↔B)

• fractional distillation leads to constant 
boiling azeotrope in vapor

• and (in pot after azeotrope boils off)
• (XA)initial > (XA)azeotrope pure A 
• (XA)initial < (XA)azeotrope pure B 

http://www.solvent--recycling.com/azeotrope_1.html
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Water-Ethanol Mixture

For the water-ethanol mixture, the azeotrope
concentration corresponds to ~95% of ethanol
in the mixture. This is the limit that can be
reached by distillation of a less-alcohol-rich
mixture.
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non-ideal solutions : negative deviations from ideal solution

• negative deviations from 
Raoult’s Law: 
greater forces
between components than
‘within’ components

• total pressure lower than ideal
solution

CHCl3 () + (CH3)2CO () 

http://dwb4.unl.edu/Chem/CHEM869W/CHEM869WImages/raoult2.gif
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acetone-chloroform: negative deviation  high boiling azeotrope

http://www.chm.bris.ac.uk/~chdms/Teaching/Chemical_Interactions/images/pic192.jpg

Figure 9-8 Hydrogen 
bond formation 
between acetone and 
chloroform. The 
relatively strong 
bonding between 
species leads to the 
formation of a 
maximum boiling 
azeotrope
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high boiling azeotrope

• stronger between component 
forces (A↔B) (than A ↔A, B ↔B)

• fractional distillation leads to pure 
component in vapor until solution 
(pot) reaches azeotrope composition

• (XA)initial > (XA)azeotrope pure A 
• (XA)initial < (XA)azeotrope pure B 

http://www.solvent--recycling.com/azeotrope_1.html
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simple distillation

http://www.docbrown.info/page12/gifs/distill.gif
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simple distillation (one evaporation; Tbp varies as X changes)
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fractional distillation

http://www.wpbschoolhouse.btinternet.co.uk/page12/gifs/FracDistRed.gif
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Fractional Distilation

liquid composition

vapor composition

I. • start with 50-50 mixture
• Tbp ≈ 366

II. • vapor Xv
benzene ≈.72

III. • condense Xbenzene ≈.72
• Tbp≈359.5

IV. • evaporate 
• vapor Xv

benzene ≈.88

V.   etc, ...

VI.   apporaches
Xbenzene=1

I

II

III

IV
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T vs progress for a distillation

http://www.uwlax.edu/faculty/koster/Image119.gif

(top of column)
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Electrolytes and
Debye-Huckel Theory
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activity coefficients for ions  (HW8 #58)
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Debye-Hückel Theory

• ‘a priori’ calculation of activity coefficients, γ±, for ions

• expect γ± < 1 since ions not independent [effective

concentration reduced; a± < c± ]

• µ is calculated as work done to bring other charges to

region surrounding ion in question

• the result is

3 1
2 2
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Debye-Hückel Theory
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from cumulative review

whole quarter !!

slides 2-3

slides 6-21

slides 14-16

slides 4-5

slides 22-25

slides 10-13
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observations:  thermo ≡ heat

• Count Rumford, 1799   
• observed water turning into steam when canon barrel was bored
• work ⇔ heat
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1st law
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observations: mechanical efficiency of steam engine

• Sadi Carnot, 1824   
• efficiency of engines
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2nd Law
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“Applications”

How does knowledge about efficiencies of steam engines, 
mechanical systems, etc, relate to processes in chemical, 
biological, and geological systems?

ANSWERED BY:

J. W. Gibbs- arguably the frist great American scientist who 
combined the concepts of heat and entropy and proposed 
“[Gibbs] Free Energy”, G, a thermodynamic state function 
that leads to a whole spectrum of applications
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Free Energy and Equilibrium
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Applications
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quantitative-deductive mathematical abilities
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Final Exam

• Conceptual and ‘analytical math’ from throughout term
• Problems concentrate on material since last exam

• Partial molar quantities, ∆µ for variable composition
• Ideal Solutions and corrections for non-ideality
• Phase equilibria and phase diagrams 

one-component, relationship of T and P for one component equilibrium
two-component (solid ⇆ solution and solution ⇆ vapor )

• Colligative properties (HW8)
• Electrochemistry (HW8)

• Φ and ΔG, Δµ
• Three cells

• Vocabulary from concluding factoids
• BRAIN POWER
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Chemistry 163B
Winter 2020

help sessions
Finals Prep
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FINIS
(except)
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MUCH
Thanks To

two GREAT TAs

and
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