Chemistry 1B-AL

Fall 2016

sessions Lectures 10-11-12

- Lewis electron-dot structures
- Bond lengths, energies and $\Delta \mathrm{H}$ (back to pp. 615-622, much of this in Chem 1C)
- Valence State Electron-Pair Repulsion (VSPER)
- Polarity of polyatomic molecules (p 600-606)
filling of $n s^{2} n p^{6}$ uses atomic orbitals of similar energy to form covalent bond (note H requires only 2 electrons)
- Sum the valence electrons from all atoms. Do not worry about keeping track of which electrons come from which atoms. It is the total number of electrons that is important.
- Use a pair of electrons to form a bond between each pair of bound atoms.
- Arrange the remaining electrons to satisfy the duet rule for hydrogen and the octet rule for the second (and higher) row atoms.

Gene's pathetic method:

- use atomic Lewis valence electron diagrams (LVEDs)
- mess around to get octet structures

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

		1A(1)	2A(2)
		$n s^{1}$	$n s^{2}$
$\begin{aligned} & \text { 응 } \\ & \hline 0 \end{aligned}$	2	- Li	- $\mathrm{Be} \cdot$
	3	- Na	- Mg•

3A(13)	4A(14)	5A(15)	6A(16)	7A(17)	8A(18)
$n s^{2} n p^{1}$	$n s^{2} n p^{2}$	$n s^{2} n p^{3}$	$n s^{2} n p^{4}$	$n s^{2} n p^{5}$	$n s^{2} n p^{6}$
\dot{B}	\dot{C}	-N•	$\text { : } 0$	$: F:$: Ne:
- Al	$\cdot \dot{\mathbf{S i}}$	- $\stackrel{\text { P }}{ }$.	$: \ddot{S}$	$: \ddot{\mathrm{Cl}}$:	: Ar $_{\bullet}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3A(13)	4A(14)	5A(15)	6A(16)	$7 \mathrm{~A}(17)$	8A(18)
$n s^{2} n p^{1}$	$n s^{2} n p^{2}$	$n s^{2} n p^{3}$	$n s^{2} n p^{4}$	$n s^{2} n p^{5}$	$n s^{2} n p^{6}$
\dot{B}	\dot{C}	$\stackrel{\bullet}{\mathrm{N}}$	$\ddot{0}$: F :	: Ne:
-AI •	$\cdot \stackrel{\dot{S i}}{ }$	$\ddot{\mathrm{P}}$: $\stackrel{\text { S }}{ }$.	: Cl :	: Ar:

- H atom shares 1 pair of e's (peripheral or 'terminal' atom)
- C atom shares 4 pairs of e's
- N atom shares 3 pairs of e's and has 1 non-bonding pair of e's
- O atom shares 2 pairs of e's and has 2 non-bonding pairs of e's sometimes O^{\square} sharing 1 pair of e's and 3 non-bonding pairs
- F atom shares 1 pair of e's and has 3 non-bonding pairs of e's (peripheral or 'terminal' atom)
- similar for period 3 atoms

examples for molecules with single bonds

- Example 13.6e (p. 625) CF_{4}
- $\mathrm{NH}_{2}{ }^{-}$
- $\mathrm{CH}_{3} \mathrm{OH}$
- $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (structural isomers) $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$

Multiple bonds

If, after step sharing single pairs of electrons a central atom still does not have an octet, make a multiple bond by changing a lone pair from one of the surrounding atoms into a bonding pair to the central atom.

examples

- $\mathrm{C}_{2} \mathrm{H}_{4}$
- $\mathrm{C}_{2} \mathrm{H}_{2}$
- COF_{2}

MASTERING LEWIS STRUCTURES = PRACTICE PRACTICE PRACTICE

WebAssign and Marvin JS (HW4 \#35)

Resonance Structures and Formal charge
(Pp 626-627, 631-634)
covered worksheet VI I.1-I. 5

Chemistry 1B-AL Fall 2016, Study Guide and Worksheet VI

Learning Objectives and Worksheet VI

Chemistry 1B-AL Fall 2016

tectures (10-12) "Classical" Theories of Molecular Structure and Geometry (Part 1)
Read pp. 621-650 and 602-606 [back to molecular polarity dipole moments]
Supplementary video: Orbitals: Crash Course Chemistry http://voutu.be/cPDptcOwUYI

> The next three class sessions will be devoted to asking two questions: i) how do atoms combine in forming covalent bonds in polyatomic molecules and ii) what geometries do the atoms assume in three-dimensional space. In this first look at polyatomic molecules we will again take a 'classical' approach: bonding will be considered in the context of Lewis octet configurations (Lewis dot structures) and most stable geometries will be determined by electrostatic interactions. These approaches are very useful and the results will be consistent with the quantum mechanical description that we will study in future sessions.
I. Lewis molecular structures

1. Obtain structure where:
i. Number of electrons shown in structure is equal to the total number of valence electrons in the constituent atoms or ions
ii. By virtue of shared electrons or non-bonding pairs each atom has a complete shell (2-electron duet for H -atoms, and 8 -electron octet for second, and higher, row atoms)
2. Zumdahl (p. 623) $O R$
3. Lewis Valence Electron Diagrams (LVEDs)
i. the LVEDs for second and third row atoms are:

- H							He	
- Li	- Be .	- B	- ${ }^{\text {C }}$	- \quad N	- 0	$\ddot{F}:$	$: \ddot{\mathrm{Ne}}:$	
- Na	- Mg .	- Al .	$\stackrel{\text { Si }}{ }$	- \quad P	- ${ }^{\text {S }}$:	$\ddot{\mathrm{C}} \mathrm{\\|}$: Ar:	

ii. Applying the LVEDs for 'common motifs' of bonding
a. hydrogen shares \qquad _ pair of electrons forming \qquad covalent bond.
b. carbon shares \qquad of electrons forming \qquad covalent bonds.
c. nitrogen forms \qquad - covalent bonds and has \qquad non-bonding pair.
d. oxygen forms \qquad covalent bonds and has \qquad non-bonding pairs.
e. fluorine forms \qquad covalent bond and has \qquad non-bonding pairs.
f. In some molecules containing a negatively charges O^{-}atom, the O^{-}will form
\qquad covalent bond and have \qquad non-bonding pairs.
4. Multiple Covalent Bonds: To obtain an octet, two atoms may share more than one pair of electrons.
i. Common motifs are double bonds where two atoms share \qquad electrons and triple bonds where two atoms share \qquad electrons.
ii. In comparing the properties of single and multiple bonds what is generally true in regard to their:
HOMEWORK
HWH4: 40
bond strength \square
bond order:
5. To become facile with drawing Lewis structures you must:
\qquad
\qquad
\qquad

RESONANCE STRUCTURES

II. Resonance Structures

1. All resonance structures of a molecule have identical stoichiometric formulas; all isomeric structures of a molecule have identical stoichiometric formulas. What is the distinction between the meaning of different resonance structures and different isomeric structures?
2. What experimentally measured property would distinguish between $\mathrm{C}_{6} \mathrm{H}_{5}$ existing as a mixture of the two structures below and as a resonance hybrid of the structures?

HW\#4: 41, 42, 59

FORMAL CHARGE

III. Formal charge

1. Formal is concept for assigning net charges to the atoms in a molecule. I first "strips" off the valence electrons leaving positively charges atomic centers and then returns negatively charged valence electrons to the various atoms.
2. For the following atoms what would be their 'starting' positive charge contribution to the formal charge on the atom:
i. $B+$ \qquad
iv. $\mathrm{O}+$
ii. $\mathrm{N}+$
v. $H+$ \qquad
iii. $F+$ \qquad
3. The negative charges 'valence' electrons are then distributed among the atoms with the following conventions:
4. A non-bonding pair of electrons is assigned to \qquad making a contribution of - \qquad to that atom's formal charge.
i. For each pair of electrons by two atoms, the assignment is
\qquad to each atoms formal charge.
ii. The sum of formal charges must \qquad to the \qquad on the molecule or molecular ion.
5. We saw that when a molecule has two "equivalent" octet structures, the resulting resonance hybrid is an average structure with equal contributions from the two Lewis structures. More generally, if there are several, but non-equivalent, octet structures that can be drawn for a given molecule, the resulting hybrid will be a weighted average of the possible octet structures. What three factors will determine the best Lewis structures, i.e. the Lewis structures that will dominate (contribute most strongly) to the weighted average

HW"4: 43, 44, 510 hybrid?
\square

Ozone in the stratosphere protects Earth but in the troposphere, it is harmful.

UCARE2003

if this structure?

why not this structure too ?

equivalent Lewis structures
 (not isomers)

two different O-O bond lengths

- resonance structures (forms) more than one possible electronic structure (not isomers)

$$
\text { e.g. } \mathrm{O}_{3} \text { (ozone) }
$$

- how does the actual structure of O_{3} reflect the two resonance structures or resonance hybrids ??

not this (red donkey \leftrightarrow blue horse) (Sienko and Plane)

but an average of resonance forms (purple mule) (delocalized ozone)

- resonance structures (forms) are more than one possible electronic structure (not isomers)

$$
\text { e.g. } \mathrm{O}_{3} \text { (ozone) }
$$

- actual structure is average (hybrid) of possible resonance structures

octet, 18 valence e's

triangular cyclic O_{3}

The Story of O

Roald Hoffmann

The Ring

So now we have oxygen chemistry in the atmosphere, in the cell, in a decontamination process. But have we exhausted all of oxygen's secrets?
http://www.americanscientist.org/issues/pub/the-story-of-o/5 This Article from Issue January-February 2004
60]bond angles are "strained" (unstable);
[discuss later in term (quantum mechanics)]

b

Indeed, the best calculations today confirm the metastability of this ring. Cyclic ozone lies about 130 kilojoules per mole above normal O_{3} but has a barrier of no less than 95 kilojoules per mole preventing conversion to the open form.

- $\left[\mathrm{CO}_{3}\right]^{2-}$ -
- $\mathrm{C}_{6} \mathrm{H}_{6}$ (in class)

Formal charge is a way of associating electrons in a molecule with the various atoms thus allowing one to calculate the (approximate) net charge on the atom.

Conceptual steps:

1. remove each atom's valence electrons leaving a residual positive 'core' charge on the atom; e.g. $\mathrm{H}^{+}, \mathrm{N}^{+5} \mathrm{O}^{+6}$, etc
2. the total negative charge assigned to each atom arises from:
a. electrons in a each covalent bond are divided equally between the atoms forming the bond
b. electrons in non-bonding pairs are assigned to the atom on which they reside
3. the sum of formal charges must equal the total charge on the atom or ion
formal charge $=+$ \# of valence electrons (in neutral atom)
$\begin{aligned} & \text { negative charge } \\ & \text { from electrons } \\ & \text { assigned to atom }\end{aligned}$$\left\{\begin{array}{l}-\# \text { of nonbonding electrons } \\ -1 / 2 \# \text { of bonding electrons }\end{array}\right.$

- formal charge $=\#$ of valence electrons (in neutral atom)
- \# of nonbonding electrons
$-1 / 2 \#$ of bonding electrons
Chem 1A
- oxidation number = valence électrons
- 'assigned' bonding electrons \dagger
\dagger bonding electrons 'assigned' to more electronegative atom in bond
- for non-equivalent resonance forms, the resonance form is preferable (makes a greater contribution to the average resonance hybrid) if it has:
- small formal charges
- like charges NOT on adjacent atoms
- negative formal charges reside on more electronegative atoms
- example: phosgene COCl_{2}

COCl_{2} :phosgene

> OR GREEN CORN • LUNG IRRITANT. CAUSE5 INLREASED DOPEY FEELING•COLORLE5S GAS

COCl_{2} : non-equivalent resonance forms

Formal Charge:

$$
\begin{aligned}
& \mathrm{O}=+6-6-1 / 2(2)=-1 \\
& \mathrm{C}=+4-0-1 / 2(8)=0 \\
& \mathrm{Cl}=+7-4-1 / 2(4)=+1 \\
& \mathrm{Cl}=+7-6-1 / 2(2)=0
\end{aligned}
$$

+1 on Cl unfavorable

+1 on Cl unfavorable

II structure with greatest contribution I and III minor contributions

$$
\begin{aligned}
& \text { Hay } \\
& \text { KEEP } \\
& \text { CALM } \\
& \text { ATS } \\
& \text { AOL } \\
& \text { DONE }
\end{aligned}
$$

Zumdahl Table 2.5 and 13.5, Silberberg figure 9.3

TABLE 13.5 Common Ions with Noble Gas Electron Configurations in Ionic Compounds

Group 1A	Group 2A	Group 3A	Group 6A	Group 7A	Electron Configuration
$\mathrm{H}^{-}, \mathrm{Li}^{+}$	Be^{2+}				$[\mathrm{He}]$
Na^{+}	Mg^{2+}	Al^{3+}	O^{2-}	F^{-}	$[\mathrm{Ne}]$
K^{+}	Ca^{2+}		S^{2-}	Cl^{-}	$[\mathrm{Ar}]$
Rb^{+}	Sr^{2+}		Se^{2-}	Br^{-}	$[\mathrm{Kr}]$
Cs^{+}	Ba^{2+}		Te^{2-}	I^{-}	$[\mathrm{Xe}]$

	$1 A(1)$ $2 A(2)$			3A(13)	4A(14)	5A(15)	6A(16)	7A(17)	8A(18)
		$n s^{1}$	$n s^{2}$	$n s^{2} n p^{1}$	$n s^{2} n p^{2}$	$n s^{2} n p^{3}$	$n s^{2} n p^{4}$	$n s^{2} n p^{5}$	$n s^{2} n p^{6}$
$\begin{aligned} & \text { D} \\ & \text { 음 } \end{aligned}$	2	- Li	- Be ${ }^{\text {- }}$	$\cdot \dot{B}$	- \dot{C}.	- \ddot{N}.	: 0 .	$: \ddot{F}:$: Ne:
ঃ̀	3	- Na	-Mg*	- AI	$\cdot \dot{S i}$	- $\stackrel{\rightharpoonup}{\mathrm{P}}$.	$: \ddot{s} \cdot$	$: \ddot{c} \cdot$: $\stackrel{\circ}{\text { ar }}$:

TABLE 2.5 Common Polyatomic Ions

Ion	Name	Ion	Name
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{CO}_{3}{ }^{2-}$	carbonate
$\mathrm{NO}_{2}{ }^{-}$	nitrite	$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate (bicarbonate is a widely used common name)
$\mathrm{NO}_{3}{ }^{-}$	nitrate		
$\mathrm{SO}_{3}{ }^{2-}$	sulfite	ClO^{-}	
$\mathrm{SO}_{4}{ }^{2-}$	sulfate	$\mathrm{ClO}_{\mathrm{ClO}_{2}-}$	hypochlorite chlorite
$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate (bisulfate is a widely	$\mathrm{ClO}_{3}{ }^{-}$	chlorate
	used common name)	$\mathrm{ClO}_{4}{ }^{-}$	perchlorate
OH^{-}	hydroxide	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	acetate
CN^{-}	cyanide	$\mathrm{MnO}_{4}{ }^{-}$	permanganate
$\mathrm{PO}_{4}{ }^{3-}$	phosphate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate
$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	dihydrogen phosphate	$\mathrm{O}_{2}{ }^{2-}$	peroxide

KNOW:

$\mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HSO}_{4}^{-}$, $\mathrm{CN}^{-}, \mathrm{OH}^{-}, \mathrm{PO}_{4}^{3-}, \mathrm{CO}_{3}^{2-}$, $\mathrm{HCO}_{3}{ }^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}, \mathrm{MnO}_{4}{ }^{-}$

Marvin JS Resonance Structure (HW\#5 37, 44)

Question
RESONANCE STRUCTURE DEMONSTRATION
(10 submissions)
Draw Lewis structures for the carbonate anion, $\left[\mathrm{CO}_{3}\right]^{-2}$ including resonance forms and formal charges.
see HW assignment problem 36 for notes on submission
see additional video06a

- electron deficient atoms: Be, B
- examples BeH_{2} and BF_{3}
- quantum mechanics explains
- Free radicals
- odd number of electrons
- example CH_{3}
- quantum mechanics explains
- $10,12,14,16$ electron shells for larger atoms with low-lying d-orbitals
- structures with 'expanded' shells often have preferable formal charges
- examples $\mathrm{PCl}_{5}, \mathrm{H}_{2} \mathrm{SO}_{4},\left[\mathrm{SO}_{4}\right]^{2-}, \mathrm{XeO}_{4}$

36. (Zumdahl 13.58 a, c (10 submissions)

Draw a Lewis structure that obeys the octet rule for each of the following molecules and ions.
In each case the first atom listed is the central atom.
[Note that problems 36, 39, and 40 refer to structures for some of the same molecules and ions. Here in \#36 you should just enter the octet structure corresponding to the appropriate number of valence electrons for the molecule or molecular ion; BUT NOT CHARGES ON ATOMS; they come in problem 39]
a. POCl_{3}

HW\#5 probs 36, 39, 40

[Note that problems 35,39 , and 40 refer to structures for some of the same molecules and ions.
Here in \#40 you should just enter the octet structure corresponding to the appropriate number of
valence electrons for the molecule or molecular ion; BUT NOT CHARGES ON ATOMS; they come in problem 43] it

4DaNON-OCTET minimize formal charge POCl_{3}

[^0]
Chemistry 1B-AL Fall 2016

HANDOUTS

- the properties (e.g. bond length and bond energy) of localized bonds of a given type are 'somewhat' transferable from molecule to molecule
- one can approximately calculate the relative 'energy' (enthalpy) of a substance by adding the bond energies of its constituent bonds
- since bond energies vary somewhat from compound to compound, we tabulate average bond energies

ARE responsible for:" bond lengths and loond energies (qualitative)

- For a given type of covalent bonding (single, double, triple) atomic covalent radius determines bondlength (figure Silberberg 9.13)
- For a given type of atoms the bondlength will be (single) $>($ double $)>($ triple $)($ Table 13.7 $)$
- Bond energies (strengths) will follow the trend (triple) $>($ double $)>($ single) (Table 13.7)
- Bond order single b.o. $=1$, double b.o. $=2$, triple b.o. $=3$ (more in chapter 14)

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \xrightarrow{\Delta \mathrm{H}} 2 \mathrm{HF}(\mathrm{~g})
$$

breaking bonds
$+\mathrm{BE} \mathrm{H} \mathbf{H}_{2}$
${ }^{+} \mathrm{BE} \mathrm{F}_{2}$
forming bonds
-2 BE HF EXOTHERMIC

ENDOTHERMIC

$$
2 \mathrm{H}(\mathrm{~g})+2 \mathrm{~F}(\mathrm{~g})
$$

$\Delta H_{\text {reaction }}=B E\left(H_{2}\right)+B E\left(F_{2}\right)-2 B E(H F)$
$\Delta H_{\text {reaction }}=+\Sigma B E$ (bonds broken)
$-\Sigma$ BE (bonds formed)

TIME TO GET GOING: MIDTERM\#2, Nov $9^{\text {th }}$

O1P
else

Study HINT

Marie Curie
my dear marie, my secret is that I go to Ana's sections and Joselyn's LSS tutorials and use staff OFFICE HOURS.

Valence State Electron-Pair Repulsion (VSPER)

"classical" (electrostatic) theory of molecular geometry

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

translation of book review of J.H. van't Hoff's 1874 Sur les formules de structure dans l'espace
 by Kolbe in 1877

"Not long ago l expressed the view that the lack of general education and of thiorough training in chemistry of quite a few professors of chemistry was one of the causes of the deterioration of chemical research in Germany... Will anyone to whom my worries may seem exaggerated please read, if he can, a recent memoir by Herr van't Hoff on The Arrangement of Atoms in Space, a document crammed to the hilt with outpourings of childish fantasy. This Dr. J.H. van't
 Hoff, employed by the Veterinary College at Utrecht, has, so it seems, not taste for accurate chemical research. He finds it more convenient to mount his Pegasus (evidently taken from the stables of the Veterinary College) and to announce how, on his daring flight to Mount Parnassus, he saw atoms arranged in space."

enzyme + sugar

HIV-protease complex

van' Hoff had the last laugh

The Nobel Prize in Chemistry 1901

"in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions"

Jacobus Henricus van 't Hoff
the Netherlands
Berlin University
Berlin, Germany
b. 1852
d. 1911

- ELECTRON GROUPS (non-bonding electron-pairs and covalent electron-pairs) are electron dense regions in a molecule
- these ELECTRON GROUPS will arrange themselves in space around a central atom to minimize their mutual electrostatic repulsion
- this minimum repulsion configuration determines the ELECTRONIC GEOMETRY
- the arrangement of the covalent pair regions determines MOLECULAR GEOMETRY
- An electron group (electron dense region) can be:
- Ione pair
- single bond
- multiple bond (counts as only as 1 electron group)
- The number of electron groups around the central atom is the steric number (SN)

examples of steric number (SN)

- $\mathrm{CH}_{4} \quad \mathrm{SN}=4$
- $\mathrm{NH}_{3} \quad \mathrm{SN}=4$
- $\mathrm{BeH}_{2} \quad \mathrm{SN}=2$
- $\mathrm{C}_{2} \mathrm{H}_{4} \quad \mathrm{SN}=3$
- $\mathrm{C}_{2} \mathrm{H}_{2} \quad \mathrm{SN}=2$

the minimum repulsion "electronic" geometries are (table 13.8)

You Tube

WWW Links Ch. 13
VSEPR

Linear

Trigonal planar

Trigonal bipyramidal

$\mathrm{SN} \equiv$ number of electron groups

SN=2: linear electronic geometry, linear molecular geometry

[from Handout \#17]

BeCl_{2} (p. 628)

fig Silb 10.3

$S N=3$, electronic geometry is trigonal planar

examples: $\mathrm{BF}_{3} \quad \mathrm{SO}_{2}$
[from Handout \#17]


```
SN=3, 1 LP
```


non-bonding (lone) pair

$$
\mathbf{S O}_{\mathbf{2}} \Rightarrow
$$

electronic geometry trigonal planar

$\mathbf{S} \boldsymbol{D}_{\mathbf{2}} \Rightarrow$
(molecular) geometry bent, angular, V-shaped

SN=4, electronic geometry is tetrahedral

examples $\left[\mathrm{SO}_{4}\right]^{2-} \mathrm{NH}_{3} \quad \mathrm{H}_{2} \mathrm{O}$

SN	Number of lone pairs	Molecular shape	Example

[from Handout \#17]

(a)

SN=4, tetrahedral electronic geometry

$\mathrm{NH}_{3} \Rightarrow$
1 LP
(molecular) geometry trigonal pyramidal

$\mathrm{H}_{2} \mathrm{O} \Rightarrow$
2 LP
(molecular) geometry
angular, bent, V-shaped 62

- $\mathrm{NH}_{3}\left(\mathrm{H}-\mathrm{N}-\mathrm{H} 107.3^{\circ}\right)<109.5^{\circ}$

- $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}-\mathrm{O}-\mathrm{H} 104.5^{\circ}\right)<109.5^{\circ}$

- $\mathrm{H}_{2} \mathrm{~S}\left(\mathrm{H}-\mathrm{S}-\mathrm{H} 92^{\circ}\right)$ understand using qm ch 14
(a)

Methane
Ammonia
Water

(b)

$<109.5^{\circ}$
63
figure 13.19

SN=5, electronic geometry is trigonal bipyramidal

[from Handout \#17]

N

आா \square

SN=6, octahedral electronic geometry

[from Handout \#17]

NHA WHo $\mathrm{H} \underset{\mathrm{F}}{\Longrightarrow}$
$\Rightarrow \quad \therefore \mathrm{HCH}$

Evidence that this is indeed
the case is provided by $\mathrm{SeF}_{6}{ }^{2-}, \mathrm{IF}_{6}{ }^{-}$, and XeF_{6} where, because the central atom is larger than the Br atom the fluorine ligands are not quite close-packed, allowing room for some of the nonbonding electron density to move into the valence shell to form what has been called a partial or weak lone pair, resulting in a small $\mathrm{C}_{3 \mathrm{v}}$ distortion of the octahedral structure observed for $\mathrm{BrF}_{6}{ }^{-}$[23] (Fig. 5).
XeF_{6}
distorted octahedral
distorted octahedral angles $<90^{\circ}$ because of the lone pair

The other type of molecule in which a lone-pair appears to have no effect on the geometry is AX6E molecules such as $\mathrm{BrF}_{6}{ }^{-}$and $\mathrm{SbCl}_{6}{ }^{3-}$ which are octahedral although their Lewis structures have seven electron pairs in the valence shell of the central atom.

$\left[\mathrm{BrF}_{6}\right]$
octahedral

2470 L. S. BARTELLANDR. M. GAVIN, JR.

(c)
\qquad

Polar Molecules Dípole Moments and

Molecular Geometry

(Pp 600-606)

learning objectives worksheet VII (7): section IV

IV. Polyatomic dipole moments

1. In a polar covalent bond the \qquad electronegative atom will have a partial positive charge ($\delta+$) and the \qquad electronegative atom will have a partial negative charge (δ-).

HW\#4: 49, S11, S12
2. Will molecules with polar bonds always have a (non-zero) dipole moment? Explain your answer.

Modeling dipoles and electrostatic surfaces
http://chemtube3d.com/ElectrostaticSurfacesPolar.html

non-polar vs polar bonds

red regions are electron rich and blue regions are electron poor

dipole moment $\vec{\mu}$

$\vec{\mu}$ is large, molecules aligned by electric field

official formula for dipole moment VECTOR

$\left.\vec{\mu}=\sum \boldsymbol{Q}_{A} \overrightarrow{\boldsymbol{R}}_{\mathrm{A}} \quad\right\}$ don't fret on this

- Are there polar bonds (bond dipoles)?
- Do the bond dipoles (vectors) cancel-out or reinforce in the polyatomic molecule?
- $\mathrm{H}_{2} \mathrm{O} \xrightarrow{\boldsymbol{m}} \Rightarrow$
- $\mathrm{CO}_{2} \xrightarrow{m} \Rightarrow$
- CCl_{4}
- CHCl_{3}

Molecular Geometry, Bond Dipoles, and Net Dipole http://chemtube3d.com/ElectrostaticSurfacesPolar.htm|

FINISHED For NOW !!

END OF CHAPTER 13

Figure 13.5, 13.7

(a)
(vectors) cancel

no dipole moment

(c)

EN (table 13.2)

$$
\begin{array}{ll}
\mathrm{H} & 2.20 \\
\mathrm{C} & 2.55 \\
\mathrm{Cl} & 3.16
\end{array}
$$

(fig. 13.3 ??)
bond dipoles reinforce dipole moment polar molecule

geometries where polar bonds MAY cancel (table 13.4)

TABLE 13.4

Types of Molecules with Polar Bonds but No Resulting Dipole Moment

| Type | Cancellation
 of Polar Bonds Example |
| :--- | :--- | Ball-and-Stick Model

Linear molecules with
two identical bonds

$$
B-A-B
$$

Planar molecules with three identical bonds 120 degrees apart

SO_{3}

Tetrahedral molecules with four identical bonds 109.5 degrees apart

CCl_{4}

SN=5, where to put lone pairs (I_{4} and $I_{3}{ }^{[}$)

SN=6 adjacent vs across

leads to the structure

square planar molecular geometry
(c)Houghton Mifflin Company. All rights reserved.

Table 13.7 Zumdahl

TABLE 13.7 Bond Lengths for Selected Bonds

Bond	Bond Type	Bond Length (\AA)	Bond Energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}-\mathrm{C}$	Single	1.54	347
$\mathrm{C}=\mathrm{C}$	Double	1.34	614
$\mathrm{C} \equiv \mathrm{C}$	$\underline{\text { Triple }}$	1.20	839
$\mathrm{C}-\mathrm{O}$	Single	1.43	358
$\mathrm{C}=\mathrm{O}$	Double	1.23	745
$\mathrm{C}-\mathrm{N}$	Single	1.43	305
$\mathrm{C}=\mathrm{N}$	Double	1.38	615
$\mathrm{C} \equiv \mathrm{N}$	Triple	1.16	891

(c)Houghton Mifflin Company, All rights reserved.

Table 13.7 Zumdahl

TABLE 13.7 Bond Lengths for Selected Bonds

Bond	Bond Type	Bond Length (\AA)	Bond Energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}-\mathrm{C}$	$\underline{\text { Single }}$	1.54	$\underline{347}$
$\mathrm{C}=\mathrm{C}$	$\underline{\text { Double }}$	1.34	$\underline{614}$
$\mathrm{C} \equiv \mathrm{C}$	$\underline{\text { Triple }}$	1.20	$\boxed{839}$
$\mathrm{C}-\mathrm{O}$	Single	1.43	358
$\mathrm{C}=\mathrm{O}$	Double	1.23	745
$\mathrm{C}-\mathrm{N}$	Single	1.43	305
$\mathrm{C}=\mathrm{N}$	$\underline{\text { Double }}$	1.38	$\boxed{615}$
$\mathrm{C} \equiv \mathrm{N}$	$\underline{\text { Triple }}$	1.16	$\boxed{891}$

©Houghton Mifflin Company. All rights reserved.

TABLE 13.6 Average Bond Energies ($\mathrm{kJ} / \mathrm{mol}$)

Single Bonds							
$\mathrm{H}-\mathrm{H}$	432	$\mathrm{~N}-\mathrm{H}$	391	$\mathrm{I}-\mathrm{I}$	149	$\mathrm{C}=\mathrm{C}$	614
$\mathrm{H}-\mathrm{F}$	565	$\mathrm{~N}-\mathrm{N}$	160	$\mathrm{I}-\mathrm{Cl}$	208	$\mathrm{C}=\mathrm{C}$	839
$\mathrm{H}-\mathrm{Cl}$	427	$\mathrm{~N}-\mathrm{F}$	272	$\mathrm{I}-\mathrm{Br}$	175	$\mathrm{O}=\mathrm{O}$	495
$\mathrm{H}-\mathrm{Br}$	363	$\mathrm{~N}-\mathrm{Cl}$	200			$\mathrm{C}=\mathrm{O}^{*}$	745
$\mathrm{H}-\mathrm{I}$	295	$\mathrm{~N}-\mathrm{Br}$	243	$\mathrm{~S}-\mathrm{H}$	347	$\mathrm{C}=\mathrm{O}$	1072
		$\mathrm{~N}-\mathrm{O}$	201	$\mathrm{~S}-\mathrm{F}$	327	$\mathrm{~N}=\mathrm{O}$	607
$\mathrm{C}-\mathrm{H}$	413	$\mathrm{O}-\mathrm{H}$	467	$\mathrm{~S}-\mathrm{Cl}$	253	$\mathrm{~N}=\mathrm{N}$	418
$\mathrm{C}-\mathrm{C}$	347	$\mathrm{O}-\mathrm{O}$	146	$\mathrm{~S}-\mathrm{Br}$	218	$\mathrm{~N}=\mathrm{N}$	941
$\mathrm{C}-\mathrm{N}$	305	$\mathrm{O}-\mathrm{F}$	190	$\mathrm{~S}-\mathrm{S}$	266	$\mathrm{C}=\mathrm{N}$	615
$\mathrm{C}-\mathrm{O}$	358	$\mathrm{O}-\mathrm{Cl}$	203			$\mathrm{C} \equiv \mathrm{N}$	891
$\mathrm{C}-\mathrm{F}$	485	$\mathrm{O}-\mathrm{I}$	234	$\mathrm{Si}-\mathrm{Si}$	340		
$\mathrm{C}-\mathrm{Cl}$	339			$\mathrm{Si}-\mathrm{H}$	393		
$\mathrm{C}-\mathrm{Br}$	276	$\mathrm{~F}-\mathrm{F}$	154	$\mathrm{Si}-\mathrm{C}$	360		
$\mathrm{C}-\mathrm{I}$	240	$\mathrm{~F}-\mathrm{Cl}$	253	$\mathrm{Si}-\mathrm{O}$	452		
$\mathrm{C}-\mathrm{S}$	259	$\mathrm{~F}-\mathrm{Br}$	237				
		$\mathrm{Cl}-\mathrm{Cl}$	239				
	$\mathrm{Cl}-\mathrm{Br}$	218					
	$\mathrm{Br}-\mathrm{Br}$	193					

${ }^{*} \mathrm{C}=\mathrm{O}\left(\mathrm{CO}_{2}\right)=799$

HIV protease inhibitor Ritonavir binding to the protease
http://molvis.sdsc.edu/pe1.982/atlas/atlas.htm

Zumdahl Table 2.5 and 13.5, Silberberg figure 9.3

TABLE 13.5 Common Ions with Noble Gas Electron Configurations
in Ionic Compounds

Group 1A	Group 2A	Group 3A	Group 6A	Group 7A	Electron Configuration
$\mathrm{H}^{-}, \mathrm{Li}^{+}$	Be^{2+}				$[\mathrm{He}]$
Na^{+}	Mg^{2+}	Al^{3+}	O^{2-}	F^{-}	$[\mathrm{Ne}]$
K^{+}	Ca^{2+}		S^{2-}	Cl^{-}	$[\mathrm{Ar}]$
Rb^{+}	Sr^{2+}		Se^{2-}	Br^{-}	$[\mathrm{Kr}]$
Cs^{+}	Ba^{2+}		Te^{2-}	I^{-}	$[\mathrm{Xe}]$

TABLE 2.5 Common Polyatomic Ions

\(\left.$$
\begin{array}{llll}\text { Ion } & \text { Name } & \text { Ion } & \text { Name } \\
\hline \mathrm{NH}_{4}{ }^{+} & \text {ammonium } & \mathrm{CO}_{3}{ }^{2-} & \text { carbonate } \\
\mathrm{NO}_{2}{ }^{-} & \text {nitrite } & \mathrm{HCO}_{3}{ }^{-} & \begin{array}{l}\text { hydrogen carbonate } \\
\text { (bicarbonate is a widely }\end{array} \\
\mathrm{NO}_{3}{ }^{-} & \text {nitrate } & & \begin{array}{l}\text { used common name) } \\
\mathrm{SO}_{3}{ }^{2-}\end{array} \\
\mathrm{SO}_{4}{ }^{2-} & \text { sulfite } & \text { sulfate } & \mathrm{ClO}^{-}\end{array}
$$ \begin{array}{l}hypochlorite

chlorite\end{array}\right]\)| hydrogen sulfate |
| :--- |
| $\mathrm{HSO}_{4}{ }^{-}$ |

KNOW:

$\mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HSO}_{4}^{-}$, $\mathrm{CN}^{-}, \mathrm{OH}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}$, $\mathrm{HCO}_{3}{ }^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}, \mathrm{MnO}_{4}{ }^{-}$

triangular cyclic O_{3} :

The Story of 0

Roald Hoffmann

The Ring

So now we have oxygen chemistry in the atmosphere, in the cell, in a decontamination process. But have we exhausted all of oxygen's secrets?
http://www.americanscientist.org/issues/pub/the-story-of-o/5
60Dbond angles are "strained" (unstable);
[discuss later in term (quantum mechanics)]

b

Indeed, the best calculations today confirm the metastability of this ring. Cyclic ozone lies about 130 kilojoules per mole above normal O_{3} but has a barrier of no less than 95 kilojoules per mole preventing conversion to the open form.

HW-hints Homework \#4, Due $26^{\text {th }}$ October

Chemistry 1B-AL
 Homework \#4 (\#29-\#35, S8)

Required (submit via WebAssian)

29. Zumdahl \#13.15 electronegativity
30. Zum dahl \#13.26
31. Zumdahl \#13.32
32. Zumdahl \#13.33
33. Zumdahl \#13.41
34. Zum dahl \#13.42
35. Zumdahl \#13.57
configurations of stable ions (part c: configurations)
LE
common valences (oxidation states) empirical fmlas
LE
LE
octet Lewis Electron Dots (Marvin Sketch)

Section
S8. Zumdahl \#13.3

HW\#4 probs 36, 39, 40

[Nofe that problems 35,39 , and 40 refer to structures for some of the same molecules and ions.
Here in \#40 you should just enter the octet structure corresponding to the appropriate number of valence electrons for the molecule or molecular ion; BUT NOT CHARGES ON ATOMS; they come in problem 43] 1

[^1]36. Zumdahl \#13.54 (a) resonance structures
37. Zumdahl \#13.57 resonance structures
38. Zumdahl \#13.71 (a, d, and f) formal charge (octet)
39. Zumdahl \#13.72 (for 13.71 a,d,f) formal charge (non octet)

Lewis Formal Charge:

+ 2 other equivalent
resonance structures $=$

Structure and electron density distribution of the nitrate ion and urea molecule upon protonation

Actual

(calculated by quantum mechanics)

Guus J. M. Velders and Dirk Feil
Chemical Physics Laboratory, University of Twente, PO Box 217, NL-7500 AE Ensche The Netherlands

Theoretica Chimica Acta

(C) Springer-Verlag 1992

[^0]: Submitfor Testing

[^1]: Submitfor Testing

