Chemistry 1B-AL
Fall 2016
sessions Lectures 10-11-12
"Classical" theories of bonding and molecular geometry (ch 13)

- Lewis electron-dot structures
- Bond lengths, energies and ΔH
(back to pp. 615-622, much of this in Chem 1C)
- Valence State Electron-Pair Repulsion (VSPER)
- Polarity of polyatomic molecules (p 600-606)

Chemistry 1B Fall 2016
 Lectures 10-11-12

why octets?

filling of $n s^{2} n p^{6}$ uses atomic orbitals of similar energy to form covalent bond (note H requires only 2 electrons)

Zumdahl 'steps' (p. 623)

- Sum the valence electrons from all atoms. Do not worry about keeping track of which electrons come from which atoms. It is the total number of electrons that is important.
- Use a pair of electrons to form a bond between each pair of bound atoms.
- Arrange the remaining electrons to satisfy the duet rule for hydrogen and the octet rule for the second (and higher) row atoms.

Chemistry 1B Fall 2016
 Lectures 10-11-12

how to get octet Lewis structures

Gene's pathetic method:

- use atomic Lewis valence electron diagrams (LVEDs)
- mess around to get octet structures

Note from LVEDs (usual bonding configurations to give complete shells)

- H atom shares 1 pair of e's (peripheral or 'terminal' atom)
- C atom shares 4 pairs of e's
- N atom shares 3 pairs of e's and has 1 non-bonding pair of e's
- O atom shares 2 pairs of e's and has 2 non-bonding pairs of e's sometimes O^{-}sharing 1 pair of e's and 3 non-bonding pairs
- F atom shares 1 pair of e's and has 3 non-bonding pairs of e's (peripheral or 'terminal' atom)
- similar for period 3 atoms
- Example 13.6e (p. 625) CF_{4}
- $\mathrm{NH}_{2}{ }^{-}$
- $\mathrm{CH}_{3} \mathrm{OH}$
- $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (structural isomers)
$\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$

Multiple bonds

Multiple bonds

If, after step sharing single pairs of electrons a central atom still does not have an octet, make a multiple bond by changing a lone pair from one of the surrounding atoms into a bonding pair to the central atom.

Chemistry 1B Fall 2016 Lectures 10-11-12

examples

- $\mathrm{C}_{2} \mathrm{H}_{4}$
- $\mathrm{C}_{2} \mathrm{H}_{2}$
- COF_{2}

Chemistry 1B Fall 2016
Lectures 10-11-12

WebAssign and Marvin JS (HW4 \#35)

Resonance Structures
and
Formal Charge
(Pp 626-627, 631-634)

Chemistry 1B Fall 2016
 Lectures 10-11-12

this video (clickers Q's next class) cover: worksheet VI II.1-2 and

RESONANCE STRUCTURES

Resonance structures

1. All resonance structures of a molecule have identical stoichiometric formulas; all isomeric structures of a molecule have identical stoichiometric formulas. What is the distinction between the meaning of different resonance structures and different isomeric structures?

2. What experimentally measured property would distinguish between $\mathrm{C}_{0} \mathrm{H}_{8}$ existing as a mixture of the two structures below and as a resonance hybrid of the structures?

this video (clickers Q's next class) cover: and worksheet VI III.1-5

FORMAL CHARGE

III. Formal charge

1. Formal is concept for assigning net charges to the atoms in a molecule. I first "strips" off the valence electrons leaving positively charges atomic centers and then returns negatively charged valence electrons to the various atoms.
2. For the following atoms what would be their 'starting' positive charge contribution to the formal charge on the atom:
$\begin{array}{ll}\text { i. } B+\square & \text { iv. } \mathrm{O}+\square \\ \text { ii. } \mathrm{N}+- & \text { v. } \mathrm{H}+-\end{array}$
iii. $\mathrm{F}+$
3. The negative charges 'valence' electrons are then distributed among the atoms with the following conventions
4. A non-bonding pair of electrons is assigned to \qquad making a contribution of _ ___ to that atom's formal charge.
i. For each pair of electrons by two atoms, the assignment is charge.
ii. The sum of formal charges must ______ to the ___ on the molecule or molecular ion. \qquad
\qquad
5. We saw that when a molecule has two "equivalent" octet structures, the resulting resonance hybrid is an average structure with equal contributions from the two Lewis structures. More generally, if there are several, but non-equivalent, octet structures that can be drawn for a given molecule, the resulting hybrid will be a weighted average of the possible octet structures. What three factors will determine the best Lewis structures, i.e. the Lewis structures that will dominate (contribute most strongly) to the weighted average hybrid?

HOMEWORK

510

ozone (octet structure)

Chemistry 1B Fall 2016
Lectures 10-11-12

O_{3} the more the merrier

if this structure ?

why not this structure too?
equivalent Lewis structures
(not isomers)

Chemistry 1B Fall 2016
 Lectures 10-11-12

non-equivalent bonds

resonance structures and delocalization (13.11 pp 626-627)

- resonance structures (forms) more than one possible electronic structure (not isomers)
e.g. O_{3} (ozone)
- how does the actual structure of O_{3} reflect the two resonance structures or resonance hybrids ??

Chemistry 1B Fall 2016
 Lectures 10-11-12

Chemistry 1B Fall 2016
 Lectures 10-11-12

resonance structures and delocalization (13.11 pp 626-627)

- resonance structures (forms) are more than one possible electronic structure (not isomers)
e.g. O_{3} (ozone)
- actual structure is average (hybrid) of possible resonance structures

(now is later !!) O_{3} ring structure

octet, 18 valence e's

Indeed, the best calculations today confirm the metastability of this ring. Cyclic ozone lies about 130 kilojoules per mole above normal O_{3} but has a barrier of no less than 95 kilojoules per mole preventing conversion to the open form.

- $\left[\mathrm{CO}_{3}\right]^{2-}$
- $\mathrm{C}_{6} \mathrm{H}_{6}$ (in class)

Chemistry 1B Fall 2016
 Lectures 10-11-12

formal charge on an atom in a molecule:

Formal charge is a way of associating electrons in a molecule with the various atoms thus allowing one to calculate the (approximate) net charge on the atom.

formal charge on an atom in a molecule:

Conceptual steps:

1. remove each atom's valence electrons leaving a residual positive 'core' charge on the atom;
e.g. $\mathrm{H}^{+}, \mathrm{N}^{+5} \mathrm{O}^{+6}$, etc
2. the total negative charge assigned to each atom arises from:
a. electrons in a each covalent bond are divided equally between the atoms forming the bond
b. electrons in non-bonding pairs are assigned to the atom on which they reside
3. the sum of formal charges must equal the total charge on the atom or ion

Chemistry 1B Fall 2016
 Lectures 10-11-12

formal charge
formal charge $=+\#$ of valence electrons (in neutral atom)
$\begin{aligned} & \text { negative charge } \\ & \text { from electrons } \\ & \text { assigned to atom }\end{aligned}$
$-1 / 2 \#$ of bonding electrons
formal charge vs oxidation number (p 633, p 126)

- formal charge = \# of valence electrons (in neutral atom)
- \# of nonbonding electrons
$-1 / 2$ \# of bonding electrons
Chem 1A
- oxidation number $=$ valence électrons
- 'assigned' bonding electrons \dagger
\dagger bonding electrons 'assigned' to more electronegative atom in bond

Chemistry 1B Fall 2016 Lectures 10-11-12

formal charge and stability of resonance forms

- for non-equivalent resonance forms, the resonance form is preferable (makes a greater contribution to the average resonance hybrid) if it has:
- small formal charges
- like charges NOT on adjacent atoms
- negative formal charges reside on more electronegative atoms
- example : phosgene COCl_{2}
COCl_{2} :phosgene

COCl_{2} : non-equivalent resonance forms

octet structures:

Formal Charge:
$O=+6-6-1 / 2(2)=-1$
$C=+4-0-1 / 2(8)=0$
$\mathrm{Cl}=+7-4-1 / 2(4)=+1$
$\mathrm{Cl}=+7-6-1 / 2(2)=0$
+1 on Cl unfavorable

II
$\mathrm{O}=+6-4-1 / 2(4)=0$
$C=+4-0-1 / 2(8)=0$
$\mathrm{Cl}=+7-6-1 / 2(2)=0$
$\mathrm{Cl}=0$
$\mathrm{Cl}=+1$
+1 on Cl unfavorable

II structure with greatest contribution I and III minor contributions

Chemistry 1B Fall 2016 Lectures 10-11-12

Zumdahl Table 2.5 and 13.5, Silberberg figure 9.3

TABLE 13.5 Common Ions with Noble Gas Electron Configurations
in lonic Compounds

Group 1A	Group 2A	Group 3A	Group 6A	Group 7A	Electron Configuration
$\mathrm{H}^{-}, \mathrm{Li}^{+}$	Be^{2+}				$[\mathrm{He}]$
Na^{+}	Mg^{2+}	Al^{3+}	O^{2-}	F	$[\mathrm{Ne}]$
K^{+}	Ca^{2+}		S^{2-}	Cl^{-}	$[\mathrm{Ar}]$
Rb^{+}	Sr^{2+}		Se^{2-}	Br^{-}	$[\mathrm{Kr}]$
Cs^{+}	Ba^{2+}		Te^{2-}	I^{-}	$[\mathrm{Xe}]$

TABLE 2.5 Common Polyatomic lons

Ion	Name	Ion	Name
$\mathrm{NH}_{4}{ }^{-}$	ammonium	$\mathrm{CO}_{3}{ }^{\text {2- }}$	carbonate
$\mathrm{NO}_{3}{ }^{-}$	nitrite	HCO_{5}^{-}	hydrogen carbonate
NO,	nitrate		(bicarbonate is a widely
SO, ${ }^{2-}$	sulfite		used common name)
SO. ${ }^{\text {a- }}$	sulfate	ClO^{-}	hypochlorite
$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate	$\mathrm{ClO}_{2}{ }^{-}$	chlorite
	(bisulfate is a widely	ClO^{-}	chlorate
	used common name)	ClO_{4}	perchlorate
OH^{-}	hydroxide	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	acetate
CN	cyanide	$\mathrm{MnO}_{4}{ }^{-}$	permanganate
PO4 ${ }^{\text {a }}$	phosphate	$\mathrm{Cr}_{2} \mathrm{O}_{2}{ }^{2-}$	dichromate
$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{H}_{3} \mathrm{PO}_{4}{ }_{4}$	dilydrogen phosplate	$\mathrm{O}_{2}{ }^{2-}$	peroxide

KNOW:
$\mathrm{NH}_{4}^{+}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HSO}_{4}^{-}$,
$\mathrm{CN}^{-}, \mathrm{OH}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}$,
$\mathrm{HCO}_{3}{ }^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{MnO}_{4}^{-}$

Marvin JS Resonance Structure (HW\#5 37, 44)

RESONANCE STRUCTURE DEMONSTRATION
(10 submissions)
Draw Lewis structures for the carbonate anion, $\left[\mathrm{CO}_{3}\right]^{-2}$ including resonance \quad see additional video06a
forms and formal charges.
see HW assignment problem 36 for notes on submission

Chemistry 1B Fall 2016
 Lectures 10-11-12

Exceptions (13.12 pp 627-636) explained by quantum mechanics

- electron deficient atoms: Be, B
- examples BeH_{2} and BF_{3}
- quantum mechanics explains
- Free radicals
- odd number of electrons
- example CH_{3}
- quantum mechanics explains
- $10,12,14,16$ electron shells for larger atoms with low-lying d-orbitals
- structures with 'expanded' shells often have preferable formal charges
- examples $\mathrm{PCl}_{5}, \mathrm{H}_{2} \mathrm{SO}_{4},\left[\mathrm{SO}_{4}\right]^{2-}, \mathrm{XeO}_{4}$

Draw a Lewis structure that obeys the octet rule for each of the following molocules and ions. in each case the first atom listed is the central atom
INote that problems 36,39 , and 40 refer to structures for some of the same molecules and ions,
Hore in $\$ 36$ you should just enter the ecter structure corsponding to the approcrinto number of
valence electrons for the molecule or molecular ion; BUT NOT CHARGES ON ATOMS; they come in problem 39]

Chemistry 1B Fall 2016
Lectures 10-11-12

HW\#5 probs 36, 39, 40

INote that problems 36,39, and 40 refer to structures for some of the same molecules and ions,
valence electrons for the molecule or molecular ion, BUT NOT CHARGES ON ATOMS, they come in probiem 43ll


```
heads up: very useful handout
```


Chemistry 1B Fall 2016
 Lectures 10-11-12

back to section 13.8 "bond energies" (616-619)

- the properties (e.g. bond length and bond energy) of localized bonds of a given type are 'somewhat' transferable from molecule to molecule
- one can approximately calculate the relative 'energy' (enthalpy) of a substance by adding the bond energies of its constituent bonds
- since bond energies vary somewhat from compound to compound, we tabulate average bond energies

ARE responsible for: bond lengths and bond energies (qualitative)

- For a given type of covalent bonding (single, double, triple) atomic covalent radius determines bondlength (figure Silberberg 9.13) \rightarrow
- For a given type of atoms the bondlength will be $($ single $)>($ double $)>($ triple $)(\underline{\text { Table 13.7 }) ~} \longrightarrow$
- Bond energies (strengths) will follow the trend (triple) $>($ double $)>($ single $)($ Table 13.7 $) ~ \mapsto$
- Bond order single b.o.=1, double b.o.=2, triple b.o. $=3$ (more in chapter 14)

Chemistry 1B Fall 2016
 Lectures 10-11-12

```
NOT responsible for: calculating }\Delta\mp@subsup{H}{\mathrm{ REACTION from bond energies (sec 13.8 }}{\mathrm{ frcmem 1C)}
```



```
ENDOTHERMIC
\[
2 \mathrm{H}(\mathrm{~g})+2 \mathrm{~F}(\mathrm{~g})
\]
```

$\Delta H_{\text {reaction }}=B E\left(H_{2}\right)+B E\left(F_{2}\right)-2 B E(H F)$
$\Delta \mathrm{H}_{\text {reaction }}=+\Sigma \mathrm{BE}$ (bonds broken) - Σ BE (bonds formed) 45

TIME TO GET GOING: MIDTERM\#2, Nov 9th

Study HINT

Valence State Electron-Pair Repulsion (VSPER)
"classical" (electrostatic) theory of molecular geometry

translation of book review of J.H. van't Hoff's 1874 Sur les formules de structure dans I'espace
by Kolbe in 1877
"Not long ago I expressed the view that the lack of general education and of thorough training in chemistry of quite a few professors of chemistry was one of the causes of the deterioration of chemical research in Germany... Will anyone to whom my worries may seem exaggerated please read, if he can, a recent memoir by Herr van't Hoff on The Arrangement of Atoms in Space, a document crammed to the hilt with outpourings of childish fantasy. This Dr. J.H. van't Hoff, employed by the Veterinary College at Utrecht, has, so it
 seems, not taste for accurate chemical research. He finds it more convenient to mount his Pegasus (evidently taken from the stables of the Veterinary College) and to announce how, on his daring flight to Mount Parnassus, he saw atoms arranged in space."

Chemistry 1B Fall 2016 Lectures 10-11-12

a knowledge of molecular geometry is essential in biological chemistry

enzyme + sugar

HIV-protease complex

van' Hoff had the last laugh

"in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic
pressure in solutions"

Jacobus Henricus van 't Hoff
the Netherlands
Berlin University
Berlin, Germany
b. 1852
d. 1911

Chemistry 1B Fall 2016
 Lectures 10-11-12

Basic premises of VSEPR

- ELECTRON GROUPS (non-bonding electron-pairs and covalent electron-pairs) are electron dense regions in a molecule
- these ELECTRON GROUPS will arrange themselves in space around a central atom to minimize their mutual electrostatic repulsion
- this minimum repulsion configuration determines the ELECTRONIC GEOMETRY
- the arrangement of the covalent pair regions determines MOLECULAR GEOMETRY

electron groups

- An electron group (electron dense region) can be:
- lone pair
- single bond
- multiple bond (counts as only as 1 electron group)
- The number of electron groups around the central atom is the steric number (SN)

Chemistry 1B Fall 2016

Lectures 10-11-12

examples of steric number (SN)

- $\mathrm{CH}_{4} \quad \mathrm{SN}=4$
- $\mathrm{NH}_{3} \mathrm{SN}=4$
- $\mathrm{BeH}_{2} \quad \mathrm{SN}=2$
- $\mathrm{C}_{2} \mathrm{H}_{4} \quad \mathrm{SN}=3$
- $\mathrm{C}_{2} \mathrm{H}_{2} \quad \mathrm{SN}=2$
the minimum repulsion "electronic" geometries are (table 13.8)

SN=2: linear electronic geometry, linear molecular geometry

$S N=3,1 L P$

$\boldsymbol{S \boldsymbol { D } _ { 2 }} \Rightarrow$
electronic geometry trigonal planar

$\mathbf{S \boldsymbol { D } _ { 2 }} \Rightarrow$
(molecular) geometry
bent, angular, V-shaped

Chemistry 1B Fall 2016
Lectures 10-11-12

Chemistry 1B Fall 2016
 Lectures 10-11-12

effects of extra lone-pair repulsion

- $\mathrm{NH}_{3}\left(\mathrm{H}-\mathrm{N}-\mathrm{H} 107.3^{\circ}\right) \quad<109.5^{\circ}$
- $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}-\mathrm{O}-\mathrm{H} 104.5^{\circ}\right)<109.5^{\circ}$
bond e's

(a)
- $\mathrm{H}_{2} \mathrm{~S}\left(\mathrm{H}-\mathrm{S}-\mathrm{H} 92^{\circ}\right)$ understand using qm ch 14

figure 13.19

SN=5, electronic geometry is trigonal bipyramidal

\Rightarrow ClF $_{3} \Rightarrow$
$\Rightarrow \mathrm{XeF}_{2} \Rightarrow$

Chemistry 1B Fall 2016
 Lectures 10-11-12

SN=6, octahedral electronic geometry

$I F_{7}, X e F_{6} \mathrm{SN}=7$????
DON'T FRET
Coordination Chemistry Reviews 252 (2008) 1315-1327

\square

Chemistry 1B Fall 2016
 Lectures 10-11-12

learning objectives worksheet VII (7): section IV

non-polar vs polar bonds

red regions are electron rich and blue regions are electron poor

dipole moment $\vec{\mu}$

$\vec{\mu}$ is zero, molecules NOT aligned by electric field

degree of alignment is affected by polarity of bond (magnitude of dipole moment)
dipole moments in polyatomic molecules
official formula for dipole moment VECTOR $\left.\vec{\mu}=\sum \boldsymbol{Q}_{A} \overrightarrow{\boldsymbol{R}}_{A} \quad\right\}$ don't fret on this

- Are there polar bonds (bond dipoles)?
- Do the bond dipoles (vectors) cancel-out or reinforce in the polyatomic molecule?

examples

- $\mathrm{H}_{2} \mathrm{O} \quad \Rightarrow$
$\cdot \mathrm{CO}_{2} \Rightarrow$
- CCl_{4}
$\cdot \mathrm{CHCl}_{3}$

Molecular Geometry, Bond Dipoles, and Net Dipole
http://chemtube3d.com/ElectrostaticSurfacesPolar.html

FINISHED For NOW !!

END OF CHAPTER 13

Figure 13.5, 13.7

Chemistry 1B Fall 2016
 Lectures 10-11-12

geometries where polar bonds MAY cancel (table 13.4)

TABLE 13.4
Types of Molecules with Polar Bonds but No Resulting Dipole Moment
Type

Linear molecules with
two identical bonds

Planar molecules with
three identical bonds
120 degrees apart

Tetrahedral molecules
with four identical
bonds 109.5 degrees
apart

Chemistry 1B Fall 2016

Lectures 10-11-12

SN=6 adjacent vs across

square planar molecular geometry

Chemistry 1B Fall 2016

Lectures 10-11-12

Silberberg figure 9.13

Table 13.7 Zumdahl

TABLE 13.7 Bond Lengths for Selected Bonds

Bond	Bond Type	Bond Length (\AA)	Bond Energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}-\mathrm{C}$	Single	1.54	347
$\mathrm{C}=\mathrm{C}$	Double	1.34	614
$\mathrm{C} \equiv \mathrm{C}$	Triple	1.20	839
$\mathrm{C}-\mathrm{O}$	Single	1.43	358
$\mathrm{C}=\mathrm{O}$	Double	1.23	745
$\mathrm{C}-\mathrm{N}$	Single	1.43	305
$\mathrm{C}=\mathrm{N}$	Double	1.38	615
$\mathrm{C} \equiv \mathrm{N}$	Triple	1.16	891

Chemistry 1B Fall 2016
 Lectures 10-11-12

Table 13.7 Zumdahl

TABLE 13.7 Bond Lengths for Selected Bonds

Bond	Bond Type	Bond Length (\AA)	Bond Energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}-\mathrm{C}$	$\underline{\text { Single }}$	1.54	$\underline{347}$
$\mathrm{C}=\mathrm{C}$	$\underline{\text { Double }}$	1.34	$\frac{614}{839}$
$\mathrm{C} \equiv \mathrm{C}$	$\underline{\text { Triple }}$	1.20	358
$\mathrm{C}-\mathrm{O}$	Single	1.43	745
$\mathrm{C}=\mathrm{O}$	Double	1.23	-305
$\mathrm{C}-\mathrm{N}$	Single	1.43	$\boxed{615}$
$\mathrm{C}=\mathrm{N}$	$\underline{\text { Double }}$	1.38	-891
$\mathrm{C} \equiv \mathrm{N}$	$\underline{\text { Triple }}$	1.16	

Zumdahl table 13.6

TABLE 13.6 Average Bond Energies ($\mathrm{kJ} / \mathrm{mol}$)

Single Bonds							

Chemistry 1B Fall 2016
 Lectures 10-11-12

Ritonavir inhibitor "fits into" HIV Protease

HIV protease inhibitor Ritonavir binding to the protease
http://molvis.sdsc.edu/pe1.982/atlas/atlas.htm

Zumdahl Table 2.5 and 13.5, Silberberg figure 9.3

TABLE 13.5 Common Ions with Noble Gas Electron Configurations
in lonic Compounds

Group 1A	Group 2A	Group 3A	Group 6A	Group 7A	Electron Configuration
$\mathrm{H}^{-}, \mathrm{Li}^{+}$	Be^{2+}				$[\mathrm{He}]$
Na^{+}	Mg^{2+}	Al^{3+}	O^{2-}	F	$[\mathrm{Ne]}$
K^{+}	Ca^{-}		S^{2-}	Cl^{-}	$[\mathrm{Ar}]$
Rb^{+}	Sr^{2+}		Sc^{2-}	Br^{-}	$[\mathrm{Kr}]$
Cs^{+}	Ba^{2+}		Te^{2-}	I^{-}	$[\mathrm{Xe}]$

lon	Name	Ion	Name
$\mathrm{NH}_{4}{ }^{\text {+ }}$	ammonium	$\mathrm{CO}_{3}{ }^{2-}$	carbonate
$\mathrm{NO}_{2}{ }^{-}$	nitrite	HCO^{-}	hydrogen carbonate
NO,	nitrate		(bicarbonate is a widely
SO, ${ }^{2-}$	sulfite		used common name)
SO. ${ }^{2-}$	sulfate	ClO^{-}	hypochlorite
HSO_{4}^{-}	hydroern sulfate	$\mathrm{ClO}_{2}-$	chlorite
	hydrogen sulfate (bisulfate is a widely	Co_{3}^{-}	chlorate
	used common name)	$\mathrm{ClO}_{4}{ }^{-}$	perchlorate
OH	hydroxide	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	acerate
CN^{-}	cyanide	$\mathrm{MnO}^{\text {- }}$	permanganate
$\mathrm{PO}_{4}{ }^{\text {a }}$	phosphate	$\mathrm{Cr}_{2} \mathrm{O}^{2}{ }^{2-}$	dichromate
$\mathrm{HPO}_{4}{ }^{\text {a- }}$	hydrogen phosphate	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	ditydrogen phosphate	$\mathrm{O}_{2}{ }^{2-}$	peroxide

KNOW:
$\mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HSO}_{4}^{-}$, $\mathrm{CN}^{-}, \mathrm{OH}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}$, $\mathrm{HCO}_{3}^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{MnO}_{4}^{-}$

Chemistry 1B Fall 2016
 Lectures 10-11-12

```
triangular cyclic O
```


The Story of O
 Roald Hoffmann

The Ring
So now we have oxygen chemistry in the atmosphere, in the cell, in a decontamination process. But have we exhausted all of oxygen's secrets?
http://www.americanscientist.org/issues/pub/the-story-of-o/5

b

Indeed, the best calculations today confirm the metastability of this ring. Cyclic ozone lies about 130 kilojoules per mole above normal O_{3} but has a barrier of no less than 95 kilojoules per mole preventing conversion to the open form.

HW-hints Homework \#4, Due $26^{\text {th }}$ October

Chemistry 1B-AL Homework \#4 (\#29-\#35, S8)

Required (submit via WebAssian)

29.	Zumdahl \#13.15	electronegativity
30.	Zumdahl \#13.26	configurations of stable ions (part c: configurations)
31.	Zumdahl \#13.32	LE
32.	Zumdahl \#13.33	common valences (oxidation states) empirical fmlas
33.	Zumdahl \#13.41	LE
34.	Zumdahl \#13.42	LE
35.	Zumdahl \#13.57	octet Lewis Electron Dots (Marvin Sketch)

Section

S8. Zumdahl \#13.3

Chemistry 1B Fall 2016

Lectures 10-11-12

HW\#4 probs 36, 39, 40

HW\#4

36. Zumdahl \#13.54 (a) resonance structures
37. Zumdahl \#13.57 resonance structures
38. Zumdahl \#13.71 (a, d, and f) formal charge (octet)
39. Zumdahl \#13.72 (for $13.71 \mathrm{a}, \mathrm{d}, \mathrm{f})$ formal charge (non octet)

Chemistry 1B Fall 2016

Lectures 10-11-12

