

Fall 2016

sessions Lectures 10-11-12

- Lewis electron-dot structures
- Bond lengths, energies and ΔH (back to pp. 615-622, much of this in Chem 1C)
- Valence State Electron-Pair Repulsion (VSPER)
- Polarity of polyatomic molecules (p 600-606)

1

why octets? filing of ns²np⁶ uses atomic orbitals of similar energy to form covalent bond (note H requires only 2 electrons)

	Multiple bonds
central ato a multiple i one of the	p sharing single pairs of electrons a m still does not have an octet, make bond by changing a lone pair from surrounding atoms into a bonding central atom.

formal charge and stability of resonance forms

- for non-equivalent resonance forms, the resonance form is preferable (makes a greater contribution to the average resonance hybrid) if it has:
 - small formal charges
 - like charges NOT on adjacent atoms
 - negative formal charges reside on more electronegative atoms
- example : phosgene COCl₂

TABLE 13.7 Bond Lengths for Selected BondsBondBond TypeBond Length (Å)Bond Energy (kJ/mc $C-C$ Single 1.54 347 $C=C$ Double 1.34 614 $C=C$ Triple 1.20 839 $C-O$ Single 1.43 358 $C=O$ Double 1.23 745 $C-N$ Single 1.43 305
C=C Double 1.34 614 C=C Triple 1.20 839 C=O Single 1.43 358 C=O Double 1.23 745 C=N Single 1.43 305
$\begin{array}{c c} C \equiv C & Triple & 1.20 & 839 \\ \hline C - O & Single & 1.43 & 358 \\ \hline C = O & Double & 1.23 & 745 \\ \hline C - N & Single & 1.43 & 305 \end{array}$
C-O Single 1.43 358 C=O Double 1.23 745 C-N Single 1.43 305
C=O Double 1.23 745 C=N Single 1.43 305
C—N Single 1.43 305
C=N Double 1.38 615
$C \equiv N$ Triple 1.16 891
©Houghton Mifflin Company. All right

TABLE 13.6 Ave	rage Bond Energ		nol)			
	Single Bo				Multiple	
$\begin{array}{c ccccc} H-H & 432\\ H-F & 565\\ H-C & 427\\ H-Br & 363\\ H-I & 295\\ \hline \\ C-H & 413\\ C-C & 347\\ C-N & 305\\ C-O & 358\\ \hline \\ C-F & 485\\ C-CI & 339\\ \hline \\ C-Br & 276\\ C-I & 240\\ C-S & 259\\ \hline \end{array}$	$\begin{array}{c} N-H \\ N-N \\ N-F \\ N-Cl \\ N-Br \\ N-O \\ O-H \\ O-O \\ O-F \\ O-Cl \\ O-Cl \\ O-I \\ \hline \\ F-F \\ F-Cl \\ F-Br \\ Cl-Cl \\ Cl-Br \\ Br-Br \\ \end{array}$	391 160 272 200 243 201 467 146 190 203 234 154 233 237 239 218 193	$\begin{array}{c} I - I \\ I - CI \\ I - Br \\ S - H \\ S - F \\ S - CI \\ S - Br \\ S - S \\ Si - H \\ Si - C \\ Si - O \\ Si - O \end{array}$	149 208 175 347 327 253 218 266 340 393 360 452	$C=C$ $C\equiv C$ $0=0$ $C=0^{*}$ $C\equiv 0$ $N=0$ $N=N$ $C=N$ $C\equiv N$	614 839 495 745 1072 607 418 941 615 891
*C=O (CO ₂) = 799						

 31. Zumdahl #13.32 32. Zumdahl #13.33 33. Zumdahl #13.41 34. Zumdahl #13.42 35. Zumdahl #13.57 Section 			Chemistry 1B-AL Homework #4 <i>(#29-#35, S8)</i>
30. Zumdahl #13.26 31. Zumdahl #13.32 32. Zumdahl #13.33 33. Zumdahl #13.41 34. Zumdahl #13.42 35. Zumdahl #13.57 Section			Required (submit via <u>WebAssiqn</u>)
31. Zumdahl #13.32 32. Zumdahl #13.33 33. Zumdahl #13.41 34. Zumdahl #13.42 35. Zumdahl #13.57 Section	29.	Zumdahl #13.15	electronegativity
 31. Zumdahl #13.32 32. Zumdahl #13.33 33. Zumdahl #13.41 34. Zumdahl #13.42 35. Zumdahl #13.57 Section 	30.	Zumdahl #13.26	configurations of stable ions (part c: configurations)
32. Zumdahl #13.33 common valences (oxidation states) empirical fm 33. Zumdahl #13.41 LE 34. Zumdahl #13.42 LE 35. Zumdahl #13.57 octet Lewis Electron Dots (Marvin Sketch) Section	31.	Zumdahl #13.32	
 33. Zumdahl #13.41 LE 34. Zumdahl #13.42 LE 35. Zumdahl #13.57 octet Lewis Electron Dots (Marvin Sketch) 	32.	Zumdahl #13.33	
 34. Zumdahl #13.42 35. Zumdahl #13.57 Ctet Lewis Electron Dots (Marvin Sketch) Section	33.	Zumdahl #13.41	
35. Zumdahl #13.57 octet Lewis Electron Dots (Marvin Sketch) Section	34.	Zumdahl #13.42	
	35.	Zumdahl #13.57	
	Se	ction	•
S8. Zumdahl #13.3	S8.	Zumdahl #13.3	

