1

Chemistry 1B-AL

Fall 2016

sessions Lectures 10-11-12

"Classical" theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond lengths, energies and ΔH (back to pp. 615-622, much of this in Chem 1C) Valence State Electron-Pair Repulsion (VSPER) Polarity of polyatomic molecules (p 600-606)

form	al charge on an atom in a molecule:
Conce	ptual steps:
1.	remove each atom's valence electrons leaving a residual positive 'core' charge on the atom; e.g. H* , N*5 $$ O*6 , etc
2.	 the total negative charge assigned to each atom arises from: a. electrons in a each covalent bond are divided equally between the atoms forming the bond b. electrons in non-bonding pairs are assigned to the atom on which they reside
3.	the sum of formal charges must equal the total charge on the atom or ion

beck to section 13.8 "bond energies" (616-619)
energies (e.g. bond length and bond energy) of localized bonds of a given type are 'somewhat' transferable from molecule
ene can approximately calculate the relative 'energy' (enthalpy) of a substance by adding the bond energies of its constituent bonds
since bond energies vary somewhat from compound to compound, we tabulate average bond energies

Basic premises of VSEPR ELECTRON GROUPS (non-bonding electron-pairs and covalent electron-pairs) are electron dense regions in a molecule these ELECTRON GROUPS will arrange themselves in space around a central atom to minimize their mutual electrostatic repulsion this minimum repulsion configuration determines the ELECTRONIC GEOMETRY the arrangement of the covalent pair regions determines MOLECULAR GEOMETRY

53

BLE 13.7	Bond Lengths for	Selected Bonds	
Bond	Bond Type	Bond Length (Å)	Bond Energy (kJ/mol)
C-C	Single	1.54	347
C=C	Double	1.34	614
C=C	Triple	1.20	839
C0	Single	1.43	358
C=O	Double	1.23	745
C-N	Single	1.43	305
C=N	Double	1.38	615
C≡N	Triple	1.16	891
		6	Nanochton Millio Company, All orbits re-

		Chemistry 1B-AL Homework #4 (#29-#35, S8)	
		Required (submit via <u>WebAssiqn</u>)	
29.	Zumdahl #13.15	electronegativity	
30.	Zumdahl #13.26	configurations of stable ions (part c:	configurations
31.	Zumdahl #13.32	15	.
32	Zumdahl #13.33	common valences (oxidation states)	empirical fmla
33.	Zumdahl #13.41	LE	
34.	Zumdahl #13.42	IE.	
35.	Zumdahl #13.57	octet Lewis Electron Dots (Marvin Sk	etch)
Sec	ction		
S8.	Zumdahl #13.3		

