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“Classical” theories of bonding and molecular geometry (ch 13)

• Lewis electron-dot structures

• Bond lengths, energies and ∆H 
(back to pp. 615-622, much of this in Chem 1C)

• Valence State Electron-Pair Repulsion  (VSPER)

• Polarity of polyatomic molecules (p 600-606)

3

why octets?

filling of  ns2np6  uses atomic orbitals of similar 
energy to form covalent bond 

(note H requires only 2 electrons)

4

Zumdahl ‘steps’ (p. 623)

• Sum the valence electrons from all atoms. Do not worry
about keeping track of which electrons come from 
which atoms. It is the total number of electrons that is 
important.

• Use a pair of electrons to form a bond between each    
pair of bound atoms.

• Arrange the remaining electrons to satisfy the duet rule 
for hydrogen and the octet rule for the second (and 
higher) row atoms.

5

how to get octet Lewis structures

Gene’s pathetic method:
• use atomic Lewis valence electron diagrams 

(LVEDs)
• mess around to get octet structures

6

Note from  LVEDs (usual bonding configurations to give complete shells)

 H atom shares 1 pair of e’s (peripheral or ‘terminal’ atom)

 C atom shares 4 pairs of e’s

 N atom shares 3 pairs of e’s and has 1 non-bonding pair of e’s

 O atom shares 2 pairs of e’s and has 2 non-bonding pairs of e’s
sometimes O} sharing 1 pair of e’s and 3 non-bonding pairs

 F atom shares 1 pair of e’s and has 3 non-bonding pairs of e’s
(peripheral or ‘terminal’ atom)

 similar for period 3 atoms
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examples for molecules with single bonds

• Example 13.6e  (p. 625)    CF4

• NH2


• CH3OH

• C2H6O  (structural isomers)  

(CH3OCH3)  

(CH3CH2OH)

8

Multiple bonds

Multiple bonds

If, after step sharing single pairs of electrons  a 
central atom still does not have an octet, make 
a multiple bond by changing a lone pair from 
one of the surrounding atoms into a bonding 
pair to the central atom.

9

examples

• C2H4

• C2H2

• COF2

10

MASTERING LEWIS STRUCTURES = PRACTICE   PRACTICE  PRACTICE

11

WebAssign and Marvin JS (HW4 #35)

HW#4-hints

12

Resonance Structures
and

Formal Charge 

(Pp 626-627, 631-634)
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covered worksheet VI  I.1-I.5

14

MASTERING LEWIS STRUCTURES = PRACTICE   PRACTICE PRACTICE

15

this video (clickers Q’s next class) cover: worksheet VI  II.1-2 and

RESONANCE STRUCTURES

16

this video (clickers Q’s next class) cover: and worksheet VI  III.1-5

FORMAL CHARGE

17

the structure of ozone                   but first: the good and the bad

produced by 
photochemical smog;

oxidizes materials like
lungs and tires

absorbs sun’s harmful
ultra-violet radiation

18

ozone  (octet structure)

triangular ??,
however, not the most 
‘stable’ structure of O3

more later 
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an octet structure

8

8
8

1

2

3

20

O3   the more the merrier

if this structure ? why not this structure too ?

equivalent Lewis structures
(not isomers)

1

2

3 1

2

3

21

non-equivalent bonds

what do these structures imply?

shorter double bond:
~123 pm (10-12 m)

longer single bond:
~143 pm (10-12 m)

two different O-O bond lengths 

22

resonance structures and delocalization (13.11 pp 626-627)

• resonance structures (forms) more than one possible    
electronic structure  (not isomers)

e.g. O3 (ozone)

• how does the actual structure of O3 reflect the two 

resonance structures or resonance hybrids ?? 

?

23

not this    ( red donkey  blue horse ) (Sienko and Plane)                    

143 pm123 pm (10-12 m)

???
original articulation:
Sienko, M. J. and Plane, R. A. 
Chemistry Toronto: McGraw-Hill, 
1964 p.94

24

but an average of resonance forms (purple mule) (delocalized ozone)

143 pm123 pm (10-12 m)

127 pm

+
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resonance structures and delocalization (13.11 pp 626-627)

• resonance structures (forms) are more than one 
possible electronic structure  (not isomers)
e.g. O3 (ozone)

• actual structure is average (hybrid) of possible
resonance structures

+ =

26

(now is later !!) O3 ring structure

octet, 18 valence e’s

???

27

triangular cyclic O3 

The Story of O
Roald Hoffmann
The Ring 
So now we have oxygen chemistry in the atmosphere, in the cell, 
in a decontamination process. But have we exhausted all of oxygen's secrets? 
http://www.americanscientist.org/issues/pub/the-story-of-o/5 This Article from Issue January-February 2004

Indeed, the best calculations today confirm the metastability of this ring. 
Cyclic ozone lies about 130 kilojoules per mole above normal O3 but 
has a barrier of no less than 95 kilojoules per mole preventing 
conversion to the open form.

60± bond angles are “strained” (unstable); 
[discuss later in term (quantum mechanics)]

∫

28

examples of resonance structures

• [CO3 ]
2

• C6H6  (in class)

29

formal charge on an atom in a molecule:

Formal charge is a way of associating electrons in a  
molecule with the various atoms thus allowing one to 
calculate the (approximate) net charge on the atom.

30

formal charge on an atom in a molecule:

Conceptual steps:

1. remove each atom’s valence electrons leaving a residual 
positive ‘core’ charge on the atom; 
e.g. H+ ,  N+5 O+6 , etc

2. the total negative charge assigned to each atom arises 
from:

a. electrons in a each covalent bond are divided 
equally between the atoms forming the bond

b. electrons in non-bonding pairs are assigned to the 
atom on which they reside

3. the sum of formal charges must equal the total charge on 
the atom or ion
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formal charge

formal charge = + # of valence electrons (in neutral atom)

– # of nonbonding electrons 

– ½ # of bonding electrons

positive core charge

negative charge
from electrons
assigned to atom

32

formal charge vs oxidation number (p 633, p 126)

• formal charge = # of valence electrons (in neutral atom)

– # of nonbonding electrons 
– ½ # of bonding electrons

• oxidation number = valence electrons 
– nonbonding electrons 
– ‘assigned’ bonding electrons†

† bonding electrons ‘assigned’ to more electronegative atom in 
bond

Chem 1A 
nr

33

formal charge and stability of resonance forms

• for non-equivalent resonance forms, the 
resonance form is preferable (makes a 
greater contribution to the average 
resonance hybrid) if it has:

• small formal charges

• like charges NOT on adjacent atoms

• negative formal charges reside on more 
electronegative atoms

• example : phosgene COCl2

34

COCl2 :phosgene

35

COCl2 : non-equivalent resonance forms

+6-6-½ (2)=−1O= 

C= 

Cl= 

O= 

C= 

Cl= 

O= 

C= 

Cl= 

+4-0-½ (8)=  0

+7-4-½ (4)=+1

+6-4-½ (4)=  0

+4-0-½ (8)=  0

+7-6-½ (2)=  0

Cl= +7-6-½ (2)=  0 Cl= +7-6-½ (2)=  0 Cl= 

0

−1

0

+1

0+1

−1

0

0

0

00
+1

0

−1

0

Formal Charge:

octet structures:

+1 on Cl unfavorable

II structure with greatest contribution
I and III minor contributions

I II III

+1 on Cl unfavorable

36
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Zumdahl Table 2.5 and 13.5, Silberberg figure 9.3

KNOW:
NH4

+, NO3
-, SO4

2-, HSO4
-,

CN- , OH-, PO4
3-, CO3

2-, 
HCO3

-, C2H3O2
-, MnO4

-

38

Marvin JS  Resonance Structure (HW#5 37, 44)

see additional video06a

39

Exceptions  (13.12  pp 627-636)   EXPLAINED BY QUANTUM MECHANICS

• electron deficient atoms:  Be, B
• examples BeH2 and BF3

• quantum mechanics explains

• Free radicals
• odd number of electrons

• example CH3

• quantum mechanics explains

• 10, 12, 14, 16  electron shells for larger atoms with 
low-lying d-orbitals

• structures with ‘expanded’ shells often have preferable formal 
charges

• examples PCl5, H2SO4, [SO4]2, XeO4

40

HW5 (some of same molecules/ions in each)
36 OCTET (no charges), 39 OCTET CHARGES, 40 non-OCTET charges

41

HW#5 probs 36, 39, 40

42

heads up: very useful handout

look at this

for VESPER
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back to section 13.8 “bond energies” (616-619)

• the properties (e.g. bond length and bond energy) of localized  
bonds of a given type are ‘somewhat’ transferable from molecule 
to molecule 

• one can approximately calculate the relative ‘energy’ (enthalpy) 
of a substance by adding the bond energies of its constituent 
bonds

• since bond energies vary somewhat from compound to 
compound, we tabulate average bond energies

44

ARE responsible for: bond lengths and bond energies (qualitative)

• For a given type of covalent bonding (single, double, triple) atomic 
covalent radius determines bondlength (figure Silberberg 9.13)

• For a given type of atoms the bondlength will be   
(single) > (double) > (triple)  (Table 13.7)

• Bond energies (strengths) will follow the trend
(triple) > (double) > (single) (Table 13.7)

• Bond order single b.o.=1, double b.o.=2, triple b.o. =3 (more in 
chapter 14)

45

NOT responsible for: calculating HREACTION from bond energies (sec 13.8 î chem 1C)

H2(g) + F2(g) 2HF(g)

2H(g)   +   2F(g)

breaking bonds

BE H2

BE F2
ENDOTHERMIC

forming bonds
2 BE HF

EXOTHERMIC

H

Hreaction = + BE (bonds broken)  
-  BE (bonds formed) 

Hreaction= BE (H2) +BE(F2)-2BE(HF) 

-+

+

46

TIME TO GET GOING: MIDTERM#2,  Nov 9th

or
else

47

Study HINT

48

albert,
tell me,

how is it that you do so
well on your CHEM 1B-02

homework?

my dear marie,
my secret is that I go to

Ana’s sections 
and Joselyn’s LSS tutorials

and use staff OFFICE HOURS.

Marie Curie
Albert Einstein
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VSPER   (13.13 pp 637-650;  handout for ch. 13)

Valence State Electron-Pair Repulsion  (VSPER)

“classical” (electrostatic) theory of 
molecular geometry

50

51

a knowledge of molecular geometry is essential in biological chemistry

HIV-protease complexenzyme + sugar

52

van’ Hoff had the last laugh

53

Basic premises of VSEPR

• ELECTRON GROUPS (non-bonding electron-pairs and 

covalent electron-pairs) are electron dense regions in a 
molecule

• these ELECTRON GROUPS will arrange themselves in 
space around a central atom to minimize their mutual 
electrostatic repulsion

• this minimum repulsion configuration determines the 
ELECTRONIC GEOMETRY

• the arrangement of the covalent pair regions determines 
MOLECULAR GEOMETRY

54

electron groups

• An electron group (electron dense region) can be:
– lone pair

– single bond

– multiple bond (counts as only as 1 electron group)

• The number of electron groups around the central 
atom is the steric number (SN)
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examples of steric number (SN)

• CH4

• NH3

• BeH2

• C2H4

• C2H2

SN=4

SN=4

SN=2

SN=3

SN=2

56

the minimum repulsion “electronic” geometries are (table  13.8)

WWW Links Ch. 13
VSEPR

57

the minimum repulsion “electronic” geometries are (fig. 10.2, Silb)

SN=2
linear

SN=3
trigonal planar

SN=4
tetrahedral

SN=5
trigonal bipyramidal

SN=6
octahedral

SN≡ number of electron groups 58

SN=2: linear electronic geometry, linear molecular geometry

fig Silb 10.3
BeCl2 (p. 628)

Cl-------Be-------Cl

BeCl2

[from Handout #17]

59

SN=3, electronic geometry is trigonal planar 

examples: BF3 SO2

angular=bent=V-shape

F

F F

B

Zumdahl
p. 637

BF3
[from Handout #17]

60

non-bonding (lone) pair

SN=3, 1 LP

SO2 SO2 

electronic geometry
trigonal planar

(molecular) geometry
bent, angular, V-shaped
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SN=4,   electronic geometry is tetrahedral 

examples [SO4]2 NH3 H2O
CF4

[from Handout #17] 62

SN=4, tetrahedral electronic geometry

NH3 H2O

2 LP
(molecular) geometry

angular, bent, V-shaped

1 LP
(molecular) geometry

trigonal pyramidal

63

effects of extra lone-pair repulsion

• NH3 (HNH  107.3°)

• H2O  (HOH   104.5°)

• H2S  (H S H   92°)
understand using qm ch 14

 
> 109.5º 

bond e’s

lone pair e’s

figure 13.19

< 109.5º 

< 109.5

< 109.5

> 109.5º 

< 109.5º 64

SN=5, electronic geometry is trigonal bipyramidal

PF5

SF4

ClF3

XeF2

[from Handout #17]

65

SN=6, octahedral electronic geometry

SF6

BrF5

XeF4

[from Handout #17]

66

IF7,   XeF6 SN=7 ????

The other type of molecule in which a lone-pair 
appears to have no effect on the geometry is AX6E 
molecules such as BrF6

− and SbCl63− which are 
octahedral although their Lewis structures have 
seven electron pairs in the valence shell of the 
central atom.

pentagonal bipyramid

IF7

XeF6

[BrF6]-

octahedral

distorted
octahedral

Coordination Chemistry Reviews 252 (2008) 1315–1327

DON’T FRET
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more than one central atom (figure 13.22 Zumdahl; figure 10.11 Silb)

H
|      ∏ ∏

Methanol  H ~C ~ O ~H
|      ∏ ∏

H

CH3OH

68

Polar Molecules
Dipole Moments

and
Molecular Geometry

(Pp 600-606)

69

learning objectives worksheet VII (7 ): section IV

70

non-polar vs polar bonds

red regions are electron rich and blue regions are electron poor

N N

H F
δ+ δ-

71

bond polarity (dipole moment), Section 13.3

dipole moment 

H     F

+ 

field electric by aligned

 moleculeslarge, is μ




N     N field electric by aligned

NOT moleculeszero, is μ


degree of alignment is affected by polarity
of bond (magnitude of dipole moment)

off
random

on
alligned

72

dipole moments in polyatomic molecules

AARQ
  } don’t fret on this

• Are there polar bonds (bond 
dipoles)?

• Do the bond dipoles (vectors )   
cancel-out  or reinforce in the
polyatomic molecule?

official formula for dipole moment VECTOR
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examples

• H2O

• CO2

•CCl4

•CHCl3

Molecular Geometry, Bond Dipoles, and Net Dipole
http://chemtube3d.com/ElectrostaticSurfacesPolar.html

74




??

FINISHED  for NOW !!

75

END OF CHAPTER 13

76

Figure 13.5, 13.7

dipole
moment

no dipole
moment

(vectors) cancel 

y

x

77

CCl4 and CHCl3

bond dipoles cancel
no dipole moment

non-polar molecule

EN (table 13.2)

H   2.20
C   2.55
Cl  3.16

(fig. 13.3 ??)

nada

bond dipoles reinforce
dipole moment
polar molecule

CCl4

CHCl3

78

geometries where polar bonds MAY cancel (table 13.4)
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SN=5, where to put lone pairs  (I4 and I3
- )

2 lone-pairs

T-shaped molecular geometry

linear molecular geometry

3 lone-pairs

80

SN=6 adjacent  vs across

square planar
molecular geometry

81

Silberberg figure 9.13

82

Table 13.7 Zumdahl

83

Table 13.7 Zumdahl

84

Zumdahl table 13.6
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85

Ritonavir inhibitor “fits into” HIV Protease

http://molvis.sdsc.edu/pe1.982/atlas/atlas.htm

HIV protease inhibitor Ritonavir binding to the protease

86

Zumdahl Table 2.5 and 13.5, Silberberg figure 9.3

KNOW:
NH4

+, NO3
-, SO4

2-, HSO4
-,

CN- , OH-, PO4
3-, CO3

2-, 
HCO3

-, C2H3O2
-, MnO4

-

87

triangular cyclic O3 

The Story of O
Roald Hoffmann
The Ring 
So now we have oxygen chemistry in the atmosphere, in the cell, in a decontamination 
process. But have we exhausted all of oxygen's secrets? 
http://www.americanscientist.org/issues/pub/the-story-of-o/5

Indeed, the best calculations today confirm the metastability of this ring. 
Cyclic ozone lies about 130 kilojoules per mole above normal O3 but 
has a barrier of no less than 95 kilojoules per mole preventing 
conversion to the open form.

60± bond angles are “strained” (unstable); 
[discuss later in term (quantum mechanics)]

∫

88

HW-hints Homework #4, Due 26th October

LE

configurations of stable ions (part c: configurations)

LE

LE
octet Lewis Electron Dots (Marvin Sketch)

common valences (oxidation states) empirical fmlas

electronegativity

89

HW#4 probs 36, 39, 40

90

HW#4

resonance structures
resonance structures

formal charge (octet)

formal charge (non octet)
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nitrate ion NO3
-

Lewis Formal Charge: 

+0.32

-0.44

-0.44 -0.44

Actual
(calculated by quantum mechanics)

+1.0

-0.67 -0.67

-0.67


