Chemistry 1B-O2, Fall 2016 Sessions 15-16

covalent bonding in polyatomic molecules

- similar to bonding in diatomic molecules in that ao's on one atom constructively interfere with on second atom to form bonds
- new twist is that the covalent bonds can involve more than one ao on each atom (we had a taste of this with the extra $2 \mathrm{~s}-2 \mathrm{p}$ interactions in the B_{2}, $\mathrm{C}_{2}, \mathrm{~N}_{2}$ diatomics)

so what's wrong with electrons in atomic configuration ???

Observed increased stability (lower energy) over 'atomic' ground state configuration via.

- formation of additional covalent bonds
- arrangement of electron groups to minimize repulsion

How does one account for:

- formation of additional bonds over what would be expected from atomic electron configuration
- bond angles different than those between atomic [p]orbitals
what "bonds" would atoms in their ground atomic states form?

bonding with $\mathrm{H} \cdot$	expected from atomic configuration	
[He] 2s Li ${ }^{\text {- }}$	Li-H	
$[\mathrm{He}] 2 \mathrm{~s}^{2} \mathrm{Be}$:	no bonds	but BeH_{2} exists
[He] $2 s^{2} 2 \mathrm{p}$ 郡.	: B-H	but also BH_{3}
$[H e] 2 s^{2} 2 p^{2}$ ¢̈.	: CH_{2}	but also CH_{4}
$[\mathrm{He}] 2 s^{2} 2 p^{3} \stackrel{\sim}{\mathrm{~N}}$ -	: NH_{3}	
also $\mathrm{H}_{2} \mathrm{O}$ and HF		

Chemistry 1B-O2, Fall 2016
 Sessions 15-16

Hybridization (energy costs and gains)

In forming covalent bonds an atom may use higher energy ao's which are not occupied in the ground state of the isolated atom.

Energy costs (disadvantages of hybrid orbitals)

- uses 'higher' energy ao's

Energy gains (advantages of hybrid orbitals)

- form more covalent bonds than in atomic configuration
- gives geometry where electron groups minimize repulsion (a la VSEPR)
- gives better overlap (constructive interference between orbitals on two atoms forming a bond)

Chemistry 1B-O2, Fall 2016 Sessions 15-16

hybridization vs bonding

- The 'first' step of hybridization involves combining orbitals on A SINGLE atom. This may involve orbitals which do not have NET overlap (e.g. 2 s and $2 p$) to get the hybrid orbitals (e.g. sp_{+}and sp_{-})
- Since there is no net interference, this step involves NO change of energy from that of the average of the a.o. energies [i.e. sp hybrids have average energy of $\left.1 / 2\left(E_{2 s}+E_{2 p}\right)\right]$
- Bonding occurs when the hybrids on TWO atoms constructively interfere to give a lower energy localized m.o. (a chemical bond)

Chemistry 1B-O2, Fall 2016 Sessions 15-16

Chemistry 1B-O2, Fall 2016 Sessions 15-16

Chemistry 1B-O2, Fall 2016 Sessions 15-16

molecules with $3^{\text {rd }}$ and $4^{\text {th }}$ row atoms

Bond angles: $\mathrm{H}_{2} \mathrm{O}\left(105^{\circ}\right)$ vs $\underline{H}_{2} \underline{\mathrm{~S}\left(92.2^{\circ}\right)}$

$$
\mathrm{NH}_{3}\left(107^{\circ}\right) \text { vs } \mathrm{PH}_{3}-\left(93.4^{\circ}\right)
$$

- As the central atom becomes larger the bond angles reflect unhybridized p oribital aos.
- These are cases where hybridization would be driven by reduction of electron group repulsion and increased bonding overlap (same number of bonds if unhybridized or hybridized).
- As the central atom gets larger, the repulsion between electron groups (e.g. lone pairs) decreases and thus the atom is more likely to remain unhybridized.

Chemistry 1B-O2, Fall 2016

Sessions 15-16

Chemistry 1B-O2, Fall 2016
 Sessions 15-16

double bonds and geometric isomers

Chemistry 1B-O2, Fall 2016 Sessions 15-16

terminal atoms: to hybridize or not to hybridize
to fybridize or not to fybridize

that is still the question?

Chemistry 1B-O2, Fall 2016 Sessions 15-16

delocalized bonding (pp. 688-690)

- electrons shared by more than two nuclei
- often associated with Lewis resonance structures
- most often involves p_{π} atomic orbitals interacting throughout a region of the molecule (called a conjugated or delocalized π-system)

Ozone (see figures 14.47 and 14.51)

Chemistry 1B-O2, Fall 2016 Sessions 15-16

excited-state orbitals in polyatomic molecules

- destructive interference leads to antibonding orbitals which are not usually occupied in the ground state of molecules but which may become occupied upon excitation of electrons by light
- types of antibonding orbitals:

$$
\begin{aligned}
\mathrm{CH}_{4}: & \sigma^{*} \\
\mathrm{C}_{2} \mathrm{H}_{4}: \sigma^{*} & =\mathrm{sp}^{2} \text { on } \mathrm{C}-1 \text { s } \mathrm{C}_{\mathrm{A}}-\mathrm{sp}^{2} \text { on } \mathrm{C}_{B} \\
\pi^{*} & =\mathrm{p}_{\pi} \text { on } \mathrm{C}_{\mathrm{A}}-\mathrm{p}_{\pi} \text { on } \mathrm{C}_{B}
\end{aligned}
$$

END of SESSIONS

15-16

