Chemistry 1B

Fall 2016

Topics 21-22
Chemical Kinetics

Chemistry 1B so far: STRUCTURE
 of atoms and molecules

Chemistry 1B now: DYNAMICS
chemical kinetics

Thermodynamics: Whether a reaction will occur
?? spontaneously and "how far" it will proceed [equilibrium conditions]

$\mathbf{2} \mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{g})$

$$
\Delta H=-484 k J \quad \text { very exothermic }
$$

HOWEVER:

nada (no reaction) almost forever

Kinetics: How fast a reaction proceeds, and the molecular steps involved in a reaction [the mechanism of a reaction].

BUT:

Kinetics: How fast a reaction proceeds, and the molecular steps involved in a reaction [the mechanism of a reaction].

$$
\mathrm{N} \mathrm{C}-\mathrm{CH}_{3}+\mathrm{I}^{-}
$$

Kinetics: How fast a reaction proceeds, and the molecular steps involved in a reaction [the mechanism of a reaction].

- Concepts and definitions
- Lecture notes
- HW10 Z15.55, Z15.52, Z15.68

- Numerical Problem Solving
- Lecture notes
- HW10 Z15.17, Z15.20, Z15.57, Z15.73, Z15.82
- Graphical interpretations
- Lecture notes
- HW10 Z15.36a, Z15.81

measuring how fast a reaction goes

spectrophotometer measures Br_{2} concentration (absorbance)
http://www.chm.davidson.edu/vce/kinetics/BromateBromideReaction.html

$\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$

more $\left[\mathrm{Br}_{2}\right]$] greater absorbance
[Br_{2}] increasing as product appears

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

TABLE 15.1

Concentrations of Reactant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ (at $300^{\circ} \mathrm{C}$)

		Concentration (mol/L)		
	Time ($\pm 1 \mathrm{~s}$)	NO_{2}	NO	O_{2}
$\begin{gathered} t=0 \\ \text { only reactant } \end{gathered}$	$\rightarrow 0$	0.0100	0	0
	50	0.0079	0.0021	0.0011
	100	0.0065	0.0035	0.0018
	150	0.0055	0.0045	0.0023
	200	0.0048	0.0052	0.0026
	250	0.0043	0.0057	0.0029
	300	0.0038	0.0062	0.0031
	350	0.0034	0.0066	0.0033
	400	0.0031	0.0069	0.0035

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$

reaction rate: [disappearance of $\left.\mathrm{NO}_{2}(\mathrm{~g})\right]=-\frac{\downarrow \text { change of }\left[\mathrm{NO}_{2}\right]}{\text { change of time }}=-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}$
DIFFERENTIAL reaction rate $=\lim _{\Delta t \rightarrow 0}-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}$

TABLE 15.1

Concentrations of Reactant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ (at $300^{\circ} \mathrm{C}$)

	Concentration (mol/L)		
Time $(\pm 1 \mathrm{~s})$	NO_{2}	NO	O_{2}
0	0.0100	0	0
50	0.0079	0.0021	0.0011
100	0.0065	0.0035	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031
350	0.0034	0.0066	0.0033
400	0.0031	0.0069	0.0035

"initial rate" at $\mathrm{t}=0(0 \rightarrow 50 \mathrm{~s})$

$$
\begin{aligned}
& \Delta t=t_{2}-t_{1}=(50-0) s=50 \mathrm{~s} \\
& -\Delta\left[N O_{2}\right]=-(0.0079-0.0100) \mathrm{mol} / \mathrm{L}=0.0021 \mathrm{~mol} / \mathrm{L} \\
& \text { rate } \approx-\frac{\Delta\left[N O_{2}\right]}{\Delta t}=\frac{0.0021}{50} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=4.2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

reaction rate changes as reaction proceeds (Z fig.15.1, Table 15.2)

$$
\text { reaction rate }=-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=-\left(\text { slope of }\left[\mathrm{NO}_{2}\right] \text { vs } \mathrm{t}\right)
$$

slope=tangent to curve

TABLE 15.2

Average Rate (in mol L- ${ }^{-1} \mathrm{~s}^{-1}$) of Decomposition of Nitrogen Dioxide as a Function of Time

$-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}$	
4.2×10^{-5} 2.8×10^{-5} 2.0×10^{-5} 1.4×10^{-5} $1.0 \times 10^{-5} \downarrow$	0
$100 \rightarrow 50$	
$150 \rightarrow 200$	
$200 \rightarrow 250$	

Note: The rate decreases with time.

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$

TABLE 15.1

Concentrations of Reactant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ (at $300^{\circ} \mathrm{C}$)

Concentration (mol/L)

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$

TABLE 15.1

Concentrations of Reactant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ (at $300^{\circ} \mathrm{C}$)

Concentration (mol/L)

higher concentrations \Rightarrow more collisions

more collisions \Rightarrow more reactions occurs

rate depends on concentrations

$$
a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D}
$$

rate constant for a given Temperature each raised to a power (usually integers)

generalized (differential) rate expression

$$
\begin{array}{ll}
\mathrm{aA}+b \mathbf{B} \stackrel{\mathrm{k}_{\mathrm{f}}}{\rightarrow} c \mathbf{C}+d \mathbf{D} & \text { forward reaction } \\
\mathrm{a} \mathbf{A}+b \mathbf{B} \stackrel{\mathrm{k}_{\mathrm{r}}}{\leftarrow} c \mathbf{C}+d \mathbf{D} & \begin{array}{c}
\text { reverse reaction } \\
\text { (products recombine) }
\end{array}
\end{array}
$$

general differential rate expression (can get more complicated):

$$
-\frac{d[A]}{d t}=k_{f}[A]^{m}[B]^{n}-\frac{k_{r}[C]^{k}[D]^{l}}{=}
$$

forward rate (loss of [A])
k_{f} rate constant of forward reaction
reverse rate (increase of [A]) k_{r} rate constant of reverse reaction

initial (differential) rate expression

$$
\begin{array}{rlr}
\mathrm{a} \mathbf{A}+b \mathbf{B} \stackrel{\mathrm{k}_{t}}{\rightarrow} c \mathbf{C}+d \mathbf{D} & \text { forward reaction } \\
a \mathbf{A}+b \mathbf{B} \stackrel{\mathrm{k}_{r}}{\leftarrow} c \mathbf{C}+d \mathbf{D} & \text { reverse reaction } \\
-\frac{d[A]}{d t}=k_{f}[A]^{m}[B]^{n}-k_{r}[C]^{k}[D]
\end{array}
$$

INITIAL RATE (initially only reactants present):

$$
\begin{aligned}
& {[\mathrm{A}]_{0},[\mathrm{~B}]_{0} \neq 0} \\
& {[\mathrm{C}]_{0},[\mathrm{D}]_{\mathrm{o}}=0}
\end{aligned} \quad-\frac{d[A]_{0}}{d t}=\overbrace{\uparrow}=\overbrace{\uparrow}[A]_{0}^{m}[B]_{0}^{n}
$$

- k is rate constant (for eqn written as disappearance of A)
- DEFINITION OF RATE ORDER rate is:
$m^{\text {th }}$ order in reactant [A]
$n^{\text {th }} \quad$ order in reactant [B]

Note: Only in certain instances (discuss soon) will the order of a reactant or product (m, n) be the same as its stoichiometric coefficient (a, b)

- overall rate order is $[m+n]^{\text {th }}$ order (i.e. total order of reaction rate) 20

$\mathbf{2} \mathrm{NO}_{\mathbf{2}}(\mathbf{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \quad$ forward reaction

$\underline{\mathbf{2 N O}} \mathbf{2} \mathbf{(g)} \leftarrow \mathbf{2} \mathbf{N O}(\mathbf{g})+\mathbf{O}_{\mathbf{2}}(\mathbf{g}) \quad$ reverse reaction initial rate:

- only reactants present
- $[\mathrm{NO}]_{0}=\left[\mathrm{O}_{2}\right]_{0}=0$
- no reverse reaction

$$
-\frac{d\left[N O_{2}\right]_{0}}{d t}=k\left[N O_{2}\right]_{0}^{n}
$$

Differential Rate Expressions

- Write rate expression in terms of reactant concentrations
- Determine order for each reactant from initial rate data
- Determine overall rate order
- Determine rate constant

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& -\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{m}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{n} \quad \text { differential initial rate }
\end{aligned}
$$

TABLE 15.4

Initial Rates from Three Experiments for the Reaction $\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{2}{ }^{-}(a q) \longrightarrow$ $\mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)$

Experiment	Initial Concentration of NH_{4}^{+}	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M	0.010 M	2.70×10^{-7}
3	0.200 M	0.010 M	5.40×10^{-7}

to determine the order in a reactant (e.g. m or n): identify two initial conditions (experiments) where the concentration of only one reactant has changed

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& -\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{\mathrm{m}=1}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{\downarrow=1}
\end{aligned}
$$

TABLE 15.4

Initial Rates from Three Experiments for the Reaction $\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{2}{ }^{-}(a q) \longrightarrow$ $\mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)$

Experiment	Initial Concentration of $\mathrm{NH}_{4}{ }^{+}$	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M		
2	0.100 M 0.200 M	0.0050 M 0.010 M 3	1.35×10^{-7}

for $\left[\mathrm{NO}_{2}^{-}\right]^{\mathrm{n}} \quad 1$ vs 2: $\left[\mathrm{NH}_{4}^{+}\right]$const, double $\left[\mathrm{NO}_{2}^{-}\right]$rate doubles $\Rightarrow \mathrm{n}=1$
for $\left[\mathrm{NH}_{4}^{-}\right]^{\mathrm{m}} \quad 2$ vs 3 : $\left[\mathrm{NO}_{2}^{-}\right]$const, double $\left[\mathrm{NH}_{4}^{+}\right]$rate doubles $\Rightarrow m=1$

order of reaction

$$
\begin{gathered}
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
\text { initial rate of disappearance }\left[\mathrm{NH}_{4}^{+}\right]=-\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{1}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{1}
\end{gathered}
$$

first order in $\left[\mathrm{NH}_{4}^{+}\right]$
first order in $\left[\mathrm{NO}_{2}{ }^{-}\right]$
second order overall

Experiment	Initial Concentration of NH_{4}^{+}	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M	0.010 M	2.70×10^{-7}
3	0.200 M	0.010 M	5.40×10^{-7}

now that we know the order of the reaction to get k use any 'experiment' (or average of all)
$\left\{\right.$ initial rate of disappearance of $\left.\mathrm{NH}_{4}^{+}\right\}=-\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{1}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{1}$

$$
\begin{aligned}
& \text { from exp } 1 \\
& 1.35 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=k\left(0.100 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1}\left(0.0050 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1} \\
& k=2.70 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1} \\
& \text { from } \exp 3 \\
& 5.40 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=k\left(0.200 \mathrm{~mol} \mathrm{~L}{ }^{-1}\right)^{1}\left(0.010 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1} \\
& k=2.70 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathbf{3} \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

remember same reaction in stop-flow apparatus, earlier slide

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

from initial rate data determine n, m, and p
$\left[\mathrm{BrO}_{3}^{-}\right]^{\mathrm{n}}: \exp 1-2 \quad\left[\mathrm{BrO}_{3}^{-}\right]$doubles, rate $\times 2 \Rightarrow \mathrm{n}=1$ $\left[\mathrm{Br}^{-}\right]^{m}$: $\exp 2-3\left[\mathrm{Br}^{-}\right]$doubles, rate $\times 2 \Rightarrow \mathrm{~m}=1$
$2=[2]^{1}$

$$
\text { rate }=-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]_{1}^{\downarrow}\left[\mathrm{Br}^{-}\right]_{1}^{m}\left[\mathrm{H}^{+}\right]^{p}
$$ $\left[H^{+}\right]^{p}$: exp 1-4 $\left[H^{+}\right]$doubles, rate $\times 4 \Rightarrow p=2 \quad 4=[2]^{2}$

28

$$
\text { rate }=-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]^{1}\left[\mathrm{Br}^{-}\right]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

first order in $\left[\mathrm{BrO}_{3}^{-}\right]$
first order in $\left[\mathrm{Br}^{-}\right]$
second order in $\left[\mathrm{H}^{+}\right]$
fourth order overall

after determining order, evaluate rate constant

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathbf{3} \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

$$
\text { rate }=-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]^{1}\left[\mathrm{Br}^{-}\right]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

	Initial Experiment Concentration of $\mathrm{BrO}_{3}^{-}(\mathrm{mol} / \mathrm{L})$	Initial Cofncentration of $\mathrm{Br}^{-}(\mathrm{mol} / \mathrm{L})$	Initial Concentration of $\mathrm{H}^{+}(\mathrm{mol} / \mathrm{L})$	Measured Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.10	0.10	0.10	8.0×10^{-4}

rate $=k \times\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1} \times\left(0.10 \mathrm{~mol} \mathrm{~L}{ }^{-1}\right)^{1} \times\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}=8.0 \times 10^{-4} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

$$
k=8.00 \mathrm{~L}^{3} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}
$$

will be identical (within experimental) using any of the 'experiments'

differential rate expressions

-Write rate expression in terms of reactant concentrations

- Determine order for each reactant from initial rate data
- Determine overall rate order
- Determine rate constant

integral rate expression

- Determine order of reaction from plot of 'concentration' vs time
- Half-life of a reaction
differential rate gives change of reactant or product concentrations with time

$$
-\frac{d[\text { reactant }]}{d t}=\cdots
$$

integrated rate gives value of reactant or product concentrations with time
from calculus $\underset{\text { value }}{\mathrm{x}}=\underset{\text { change }}{\int} d x$ value change

INTEGRATE !!!

math 11 or 19

$$
\begin{aligned}
& \int d t=? \\
& \int \frac{d x}{x}=? \\
& \int \frac{d x}{x^{2}}=?
\end{aligned}
$$

differential rate law: $-\frac{d[A]}{d t}=k[A]$ first order disappearance of reactants

$$
\begin{aligned}
& \frac{d[A]}{[A]}=-k d t \\
& \int \frac{d[A]}{[A]}=-\int k d t
\end{aligned}
$$

$$
\ln [A]=-k t+C
$$

integrated rate law: $\quad \ln [A]=-k \underline{t}+\ln [A]_{0} \quad$ when $t=0 \quad[A]=[A]_{0}$
first order: a plot of $\ln [A]$ vs t would be a
straight line with slope -k and intercept $\ln [A]$ 。

integrated first order reaction

$2 \mathrm{~N}_{2} \mathrm{O}_{5}$ (soln) $\rightarrow 4 \mathrm{NO}_{2}($ soln $)+\mathrm{O}_{2}(\mathrm{~g})$

$$
\text { rate }=-\frac{d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]^{n}
$$

[$\mathrm{N}_{2} \mathrm{O}_{5}$] vs t

How could we tell if $\mathrm{n}=1$ (first order in $\mathrm{N}_{2} \mathrm{O}_{5}$)?
[not using multiple experiments with various initial concentrations]

integrated rate law (first-order)

$$
\begin{aligned}
& \ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=-\underline{k t}+\underline{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0} \text { (if reaction is first order) }} \\
& \text { plot } \ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \text { vs } \mathbf{t}
\end{aligned}
$$

do we get straight line ??
(yes $n=1$, no $n \neq 1$)

YES !! $\mathrm{n}=1$

it is first-order
slope $=-k$
$t=0$ intercept is $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ 。

$$
\text { rate }=-\frac{d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]^{1}
$$

$$
-\frac{d[A]}{d t}=k[A]^{2} \quad \text { second order reaction; differential rate law }
$$

$$
\int \frac{d[A]}{[A]^{2}}=-k \int d t \quad \frac{1}{[A]}=+k t+\frac{1}{[A]_{0}} \quad \begin{aligned}
& \text { second order reaction; } \\
& \text { integrated rate law }
\end{aligned}
$$

$$
\text { plot }[A]^{-1} \text { vs } t \text { gives straight line }
$$

$$
\begin{aligned}
& -\frac{d[A]}{d t}=k \quad \text { zero-th order reaction; differential rate law } \\
& \int d[A]=-k \int d t \quad[A]=-k t+[A]_{0} \quad \begin{array}{l}
\text { zeroth order reaction; } \\
\text { integrated rate law }
\end{array} \\
& \text { plot [A] vs } t \text { gives straight line }
\end{aligned}
$$

$$
-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]^{1}\left[\mathrm{Br}^{-}\right]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

more complicated to get integrated rate-laws for
rate expressions which depend on several reactant concentrations :
use $\left[\mathrm{Br}^{-}\right]_{0}$ and $\left[\mathrm{H}^{+}\right]_{0} \gg\left[\mathrm{BrO}_{3}^{-}\right]_{0}$; plot In $\left[\mathrm{BrO}_{3}^{-}\right]$vs t
$\left[\mathrm{Br}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$change relatively little (constant)
reaction 'pseudo' first-order; i.e rate $\approx\left(k\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}\right)\left[\mathrm{BrO}_{3}^{-}\right]^{1}$

$$
\approx \approx \text { constant }=\left(\mathrm{k}[\mathrm{Br}-]_{0}\left[\mathrm{H}^{+}\right]_{o}^{2}\right)
$$

first order or second order ??? Example 15.5 and (HW10 \#66)

$$
2 \mathrm{C}_{4} \mathrm{H}_{6} \square \quad \mathrm{C}_{8} \mathrm{H}_{12} \quad-\frac{\mathrm{d}\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{6}\right. \text { ? }
$$

same rate data plotted two ways

(b)

$$
\frac{1}{\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]} \text { vs } \mathrm{t}
$$

straight line \Rightarrow first order
time for concentration of reactant to drop by factor of 2
$[A]_{t+1 / 2}=\frac{1}{2}[A]_{t}$
e.g. when half the original reactant left $[\mathrm{A}]_{t_{1 / 2}}=\frac{1}{2}[A]_{o}$
first-order reaction (e.g. radioactive decay)

$$
\begin{gathered}
\ln [A]_{t}=-k t+\ln [A]_{0} \text { and } \ln [A]_{t+t / 2}=-k\left(t+t_{1 / 2}\right)+\ln [A]_{0} \\
\ln [A]_{t}-\ln [A]_{t+t / 2 /}=\ln \left(\frac{[A]_{t}}{[A]_{t+t / 2}}\right)=k t_{1 / 2} \\
\frac{[A]_{t}}{[A]_{t+t / 2}}=2 \text { def of } t_{1 / 2}
\end{gathered}
$$

$$
\ln (2)=k t_{1 / 2}
$$

$$
t_{1 / 2}=\frac{\ln (2)}{k}=\frac{0.693}{k} \quad \text { eqn } 15.3
$$

still the definition of half-life

 time for concentration of reactant to drop by factor of 2$$
[A]_{t+1 / 2}=\frac{1}{2}[A]_{t} \quad \text { e.g. when half the original reactant left }[\mathrm{A}]_{t_{1 / 2}}=\frac{1}{2}[A]_{o}
$$

but:

> larger $k \Rightarrow$ shorter $\mathrm{t}_{1 / 2}$

$$
\begin{gathered}
1^{\text {st }} \\
0.693 \\
\hline k
\end{gathered}
$$

$$
2^{\text {nd }}
$$

$$
\frac{1}{k[A]_{a t t}}
$$

only for $1^{\text {st }}$ order is the half the same throughout the reaction (independent of the 'current' concentration of [A])

TABLE 15.6
Summary of the Kinetics for Reactions of the Type $a \mathrm{~A} \longrightarrow$ Products That Are Zero, First, or Second Order in [A]

Order

	Order		
	Zero	First	Second
Rate law	Rate $=k$	Rate $=k[\mathrm{~A}]$	Rate $=k[\mathrm{~A}]^{2}$
Integrated rate law	$[\mathrm{A}]=-k t+[\mathrm{A}]_{0}$	$\ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0}$	$\frac{1}{[\mathrm{~A}]}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
Plot needed to give a straight line	[A] versus t	$\ln [\mathrm{A}]$ versus t	$\frac{1}{[\mathrm{~A}]}$ versus t
Relationship of rate constant to the slope of the	Slope $=-k$	Slope $=-k$	Slope $=k$
straight line Half-life	$t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}$	$t_{1 / 2}=\frac{0.693}{k}$	$t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}$

know how to use; all needed formulas given on exam
h=6.626 \times10.34 J s
h=6.626 \times10.34 J s
c= 3.000 * 10 % m/s
c= 3.000 * 10 % m/s
me}=9.109\times1\mp@subsup{0}{}{-31}\textrm{kg
me}=9.109\times1\mp@subsup{0}{}{-31}\textrm{kg
mp}=1.672\times1\mp@subsup{0}{}{-27}\textrm{kg
mp}=1.672\times1\mp@subsup{0}{}{-27}\textrm{kg
m
$\mathrm{R}=8.3145 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\tilde{v}=\frac{1}{\lambda}=\frac{v}{c}$
$\frac{1}{\lambda}=Z^{2}\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right) \quad \mathrm{n}_{2}>\mathrm{n}_{1}$
n
$(m \Delta u) \Delta x \geq \frac{h}{4 \pi}$
$\mathrm{E} \approx=-\left(2.18 \times 10^{-18} \mathrm{~J}\right) \frac{Z_{\text {eff }}^{2}}{n^{2}}$
$r \approx\left(5.29 \times 10^{-12} \mathrm{~m}\right) \frac{n^{2}}{Z_{\text {eff }}}$

Integrated Rate Laws:

$$
\begin{array}{ll}
{[A]=-k t+[A]_{0}} & \text { zeroth-order } \\
\ln [A]=-k t+\ln [A]_{0} & \text { first-order } \\
\frac{1}{[A]}=k t+\frac{1}{[A]_{0}} & \text { second-order }
\end{array}
$$

wavelength range of visible light :
$\lambda \approx 3.5 \times 10^{-7} \mathrm{~m}$ to $7.0 \times 10^{-7} \mathrm{~m}$

$$
\begin{aligned}
& k=A e^{-E_{a} / R T} \\
& \ln k=\ln A-\frac{E_{a}}{R T} \\
& t_{1 / 2}=\frac{0.693}{k} \text { for first-order reaction }
\end{aligned}
$$

end of topics 21-22
initial rate of disappearance $\left[\mathrm{NH}_{4}^{+}\right]=-\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{m}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{n}$

Experiment	Initial Concentration of NH_{4}^{+}	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M	0.010 M	2.70×10^{-7}
3	0.200 M	0.010 M	5.40×10^{-7}

$$
\begin{aligned}
& \text { rate } & =k\left[\mathrm{NH}_{4}^{+}\right]^{m} \quad\left[\mathrm{NO}_{2}^{-}\right]^{n} \\
3: & 5.40 \times 10^{-7} & =k[0.200 \mathrm{M}]^{m}[.010 \mathrm{M}]^{n} \\
2: & 2.70 \times 10^{-7} & =k[0.100 \mathrm{M}]^{m}[.010 \mathrm{M}]^{n}
\end{aligned}
$$

divide $3 / 2$

$$
\begin{array}{cc}
\frac{3}{2}: & \frac{5.40 \times 10^{-7}}{2.70 \times 10^{-7}}=\frac{k}{k} \frac{[0.200 M]^{m}}{[0.100 \mathrm{M}]^{m}} \frac{[.010 \mathrm{M}]^{n}}{[.010 \mathrm{M}]^{n}} \\
\frac{3}{2}: & 2.00=[2]^{m} \Rightarrow m=1 \\
& (x \text { rate })=[\text { x conc }]^{n}
\end{array}
$$

initial rate $=\ldots .[A]_{0}{ }^{n} \quad n^{\text {th }}$ order in A

double initial concentration of A i.e. [2 x]

	and initial rate implies changes by \quad order n	$\frac{\text { rate }^{2}}{\text { rate } 1}=\left(\frac{\text { conc } 2}{\text { conc } 1^{2}}\right)^{n}$
if the initial concentration of one reactant doubles [2x] and the reaction rate	doubles (x2) $\longrightarrow \mathrm{n}=1$ quadruples (x4) $\longrightarrow \mathrm{n}=2$	$2=[2]^{1}$ $4=[2]^{2}$
	octuples (x8) $\quad \mathrm{n}=3$	$8=[2]^{3}$

(x rate) $=[x \text { conc }]^{n}$ also holds for other concentration multiples e.g. [3x] triple initial concentration , $n=2$, rate 9 times faster

$z^{2}{ }^{\text {th }}$ order reaction: fully occupied surface catalyst

decomposition of $\mathrm{N}_{2} \mathrm{O}$ on platinum surface

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \xrightarrow{P t(\text { surface })} 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& -\frac{d\left[\mathrm{~N}_{2} \mathrm{O}\right]}{d t}=k=k\left[\mathrm{~N}_{2} \mathrm{O}\right]^{0} \quad \text { zero }^{\text {th }} \text { order }
\end{aligned}
$$

$00 \mathrm{~N}_{2} \mathrm{O}$
(a)

(b)
after surface covered, higher [$\mathrm{N}_{2} \mathrm{O}$] leads to no greater rate of decomposition

