Chemistry 1B, Fall 2016
 Topics 21-22

Chemistry 1B

Fall 2016

Topics 21-22
Chemical Kinetics

Chemistry 1B so far: STRUCTURE
of atoms and molecules

Chemistry 1B now: DYNAMICS
chemical kinetics

Chemistry 1B, Fall 2016
 Topics 21-22

thermodynamics (chem 1C, 163B) and kinetics (chem 1B, 163C)

Thermodynamics: Whether a reaction will occur
?? spontaneously and "how far" it will proceed [equilibrium conditions]

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\Delta H=-484 \mathrm{~kJ} \quad$ very exothermic

thermodynamics (chem 1C, 163B) and kinetics (chem 1B, 163C)
HOWEVER:

nada (no reaction) almost forever

Kinetics: How fast a reaction proceeds, and the molecular steps involved in a reaction [the mechanism of a reaction].

Chemistry 1B, Fall 2016
 Topics 21-22

thermodynamics (chem 1C, 163B) and kinetics (chem 1B, 163C)
BUT:

Kinetics: How fast a reaction proceeds, and the molecular steps involved in a reaction [the mechanism of a reaction].

chemical kinetics (chapter 15)

http://www.bluffton.edu/~bergerd/classes/CEM221/sn-e/SN2_alternate.html

Chemistry 1B, Fall 2016
 Topics 21-22

specific objectives for final exam material

- Concepts and definitions
- Lecture notes
- HW10 Z15.55, Z15.52, Z15.68

- Numerical Problem Solving
- Lecture notes
- HW10 Z15.17, Z15.20, Z15.57, Z15.73, Z15.82
- Graphical interpretations
- Lecture notes
- HW10 Z15.36a, Z15.81
measuring how fast a reaction goes

http://www.chm.davidson.edu/vce/kinetics/BromateBromideReaction.html

Chemistry 1B, Fall 2016
 Topics 21-22

(for set of initial $\left[\mathrm{BrO}_{3}-\right],[\mathrm{Br}-],\left[\mathrm{H}^{+}\right]$) and fixed Temperature

Chemistry 1B, Fall 2016
 Topics 21-22

Zumdahl Sec.15.1

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

TABLE 15.1
Concentrations of Reactant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ (at $300^{\circ} \mathrm{C}$)

	Concentration (mol/L)		
Time $(\pm 1 \mathrm{~s})$	NO_{2}	NO	O_{2}
0	0.0100	$\underline{0}$	$\underline{0}$
50	0.0079	0.0021	0.0011
100	0.0065	0.0035	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031
350	0.0034	0.0066	0.0033
400	0.0031	0.0069	0.0035

Chemistry 1B, Fall 2016
 Topics 21-22

Zumdahl section 15.1

$\mathbf{2 N O}(\mathbf{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$

DIFFERENTIAL rate of chemical reaction (appearance of product)
$\mathbf{2 N O} \mathbf{2}(\mathrm{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$
reaction rate: $\left[\underline{\text { disappearance }}\right.$ of $\left.\mathrm{NO}_{2}(\mathrm{~g})\right]=-\frac{\downarrow \text { change of }\left[\mathrm{NO}_{2}\right]}{\text { change of time }}=-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}$

$$
\text { DIFFERENTIAL reaction rate }=\lim _{\Delta t \rightarrow 0}-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}
$$

TABLE 15.1			
Concentrations of Reaxtant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ (at $300^{\circ} \mathrm{C}$)			
	Concentration (mol/)		
Time ($=1 \mathrm{~s}$)	NO_{2}	No	O_{2}
0	0.0100	0	0
50	0.0079	0,0021	0.0011
100	0.0065	0.0035	0.00018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031
350	0.0034	0.0066	0.0033
400	0.0031	0.0069	0.0035

"initial rate" at $\mathrm{t}=0(0 \rightarrow 50 \mathrm{~s})$

$$
\begin{aligned}
& \Delta t=t_{2}-t_{1}=(50-0) s=50 \mathrm{~s} \\
& -\Delta\left[\mathrm{NO}_{2}\right]=-(0.0079-0.0100) \mathrm{mol} / \mathrm{L}=0.0021 \mathrm{~mol} / \mathrm{L} \\
& \text { rate } \approx-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=\frac{0.0021}{50} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=4.2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

Chemistry 1B, Fall 2016
 Topics 21-22

reaction rate changes as reaction proceeds (Z fig.15.1, Table 15.2)

$$
\text { reaction rate }=-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=-\left(\text { slope of }\left[\mathrm{NO}_{2}\right] \text { vs } \mathrm{t}\right)
$$

slope=tangent to curve

TABLE 15.2

Average Rate (in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$) of Decomposition of Nitrogen Dioxide as a Function of Time

$-\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}$	Time Period (s)
4.2×10^{-5}	
2.8×10^{-5}	
2.0×10^{-5}	
1.4×10^{-5}	
$1.0 \times 10^{-5} \downarrow$	0
00	$\rightarrow 100$
$100 \rightarrow 150$	
$150 \rightarrow 200$	
$200 \rightarrow 250$	

Note: The rate decreases with time

relations among rates of chemical reaction based on different components
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
TABLE 15.1
Concentrations of Reactant and Products as a Function of Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ (at $300^{\circ} \mathrm{C}$)

	Concentration (mol $/ \mathrm{L})$		
Time $(\pm 1 \mathrm{~s})$	NO_{2}	NO	O_{2}
0	0.0100	0	0
50	0.0079	0.0021	0.0011
100	0.0065	0.0055	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031
350	0.0034	0.0066	0.0033
400	0.0031	0.0069	0.0035

in each $\Delta t=50$ s interval

$$
-\Delta\left[\mathrm{NO}_{2}\right]=\Delta[\mathrm{NO}]=2 \Delta\left[\mathrm{O}_{2}\right]
$$

$$
-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=+\frac{d[\mathrm{NO}]}{d t}=+? \frac{d\left[\mathrm{O}_{2}\right]}{d t}
$$

\square

Chemistry 1B, Fall 2016
 Topics 21-22

relations among rates of chemical reaction based on different components
$\mathbf{2 N O} \mathbf{2}(\mathrm{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$
TABLE 15.1
Concentrations of Reactant and Products as a Function of
Time for the Reaction $2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
(at $300^{\circ} \mathrm{C}$)
Concentration ($\mathrm{mol} / \mathrm{L}$)

Time $(\pm 1 \mathrm{~s})$	NO_{2}	NO	O_{2}
0	0.0100	0	0
50	0.0079	0.0021	0.0011
100	0.0065	0.0035	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031
350	0.0034	0.0066	0.0033
400	0.0031	0.0069	0.0035

in each $\Delta t=50$ s interval
$-\Delta\left[\mathrm{NO}_{2}\right]=\Delta[\mathrm{NO}]=2 \Delta\left[\mathrm{O}_{2}\right]$

disappearance	appearance	
NO_{2}	NO	O_{2}
-0.021	0.021	0.011
mol L- ${ }^{-1}$ at $\mathrm{t}=0$		

$-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=+\frac{d[\mathrm{NO}]}{d t}=+2 \frac{d\left[\mathrm{O}_{2}\right]}{d t}$
rate will (may) generally depend on concentrations
higher concentrations \Rightarrow more collisions
more collisions \Rightarrow more reactions occurs
rate depends on concentrations

$$
a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D}
$$

concentrations of reactants each raised to a power (usually integers)

Chemistry 1B, Fall 2016
 Topics 21-22

generalized (differential) rate expression

$$
\begin{array}{lc}
a \mathbf{A}+b \mathbf{B} \xrightarrow{\mathrm{k}_{\mathrm{f}}} c \mathbf{C}+d \mathbf{D} & \text { forward reaction } \\
a \mathbf{A}+b \mathbf{B} \stackrel{\mathrm{k}_{r}}{\leftarrow} c \mathbf{C}+d \mathbf{D} & \begin{array}{c}
\text { reverse reaction } \\
\text { (products recombine) }
\end{array}
\end{array}
$$

general differential rate expression (can get more complicated):

forward rate (loss of [A])
k_{f} rate constant of forward reaction
reverse rate (increase of [A])
k_{r} rate constant of reverse reaction
initial (differential) rate expression

$$
\begin{aligned}
& a \mathbf{A}+b \mathbf{B} \xrightarrow{\mathrm{k}_{\mathrm{f}}} c \mathbf{C}+d \mathbf{D} \text { forward reaction } \\
& a \mathbf{A}+b \mathbf{B} \stackrel{\mathrm{k}_{r}}{\leftarrow} c \mathbf{C}+d \mathbf{D} \text { reverse reaction } \\
&-\frac{d[A]}{d t}=k_{f}[A]^{m}[B]^{n}-k_{r}[C]^{k}[D]^{\prime}
\end{aligned}
$$

INITIAL RATE (initially only reactants present):
$\begin{aligned} & {[\mathrm{A}]_{\mathrm{O}},[\mathrm{B}]_{\mathrm{O}} \neq 0} \\ & {[\mathrm{C}]_{\mathrm{O}},[\mathrm{D}]_{\mathrm{O}}=0}\end{aligned} \quad-\frac{d[A]_{0}}{d t}=\underset{\uparrow}{k[A]_{0}^{m}[B]_{0}^{n}}$

- k is rate constant (for eqn written as disappearance of A)
- DEFINITION OF RATE ORDER rate is:
$m^{\text {th }}$ order in reactant $[\mathrm{A}]$
$n^{\text {th }}$ order in reactant $[\mathrm{B}]$

Note: Only in certain instances (discuss soon) will the order of a reactant or product (m, n) be the same as its stoichiometric coefficient (a, b)

- overall rate order is $[m+n]^{\text {th }}$ order (i.e. total order of reaction rate) 20

Chemistry 1B, Fall 2016

Topics 21-22

rate laws: initial rate

$\mathbf{2 N O} \mathbf{2}(\mathbf{g}) \rightarrow \mathbf{2 N O}(\mathbf{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \quad$ forward reaction $\xrightarrow[2]{2} \mathbf{N O}_{2}(\underline{g}) \leftharpoondown \mathbf{2 N O}(g)+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \quad$ reverse reaction
initial rate:

- only reactants present
- $[\mathrm{NO}]_{\mathrm{O}}=\left[\mathrm{O}_{2}\right]_{\mathrm{o}}=0$
- no reverse reaction
$-\frac{d\left[\mathrm{NO}_{2}\right]_{0}}{d t}=k\left[N O_{2}\right]_{0}^{n}$
skills for HW and final (HW10 \#64-\#65)

Differential Rate Expressions

-Write rate expression in terms of reactant concentrations

- Determine order for each reactant from initial rate data
- Determine overall rate order
- Determine rate constant

Chemistry 1B, Fall 2016
 Topics 21-22

determining rate order from initial rate (table 15.4 p 723 Z)

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& -\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{m}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{n} \quad \text { differential initial rate }
\end{aligned}
$$

TABLE 15.4

Initial Rates from Three Experiments for the Reaction $\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{2}{ }^{-}(a q) \longrightarrow$ $\mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)$

Experiment	Initial Concentration of NH_{4}^{+}	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M	0.010 M	2.70×10^{-7}
3	0.200 M	0.010 M	5.40×10^{-7}

to determine the order in a reactant (e.g. m or n): identify two initial conditions (experiments) where the concentration of only one reactant has changed
determining rate order from initial rate (table 15.4 p 723 Z)

$$
\begin{aligned}
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& -\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{m^{=}=1}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{n=1}
\end{aligned}
$$

TABLE 15.4			
Initial Rates from Three Experiments for the Reaction $\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{2}{ }^{-}(a q)$ $\mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$			
Experiment	Initial Concentration of $\mathrm{NH}_{4}{ }^{+}$	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	$\begin{aligned} & \text { Initial Rate } \\ & \left(\mathrm{mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right) \end{aligned}$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M Ј	0.010 M	$2.70 \times 10^{-}$
3	0.200 M	0.010 M	$5.40 \times 10^{-}$

(x rate $)=[x \text { conc }]^{n}$
(2) $=(2)^{1}$
for $\left.\left[\mathrm{NO}_{2}\right]^{-}\right]^{n} 1$ vs 2: $\left[\mathrm{NH}_{4}^{+}\right]$const, double $\left[\mathrm{NO}_{2}^{-}\right]$rate doubles $\Rightarrow \mathrm{n}=1$
for $\left[\mathrm{NH}_{4}^{-}\right]^{m} \quad 2$ vs $3:\left[\mathrm{NO}_{2}^{-}\right]$const, double $\left[\mathrm{NH}_{4}^{+}\right] \quad$ rate doubles $\Rightarrow m=1$

Chemistry 1B, Fall 2016
 Topics 21-22

order of reaction

$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
initial rate of disappearance $\left[\mathrm{NH}_{4}^{+}\right]=-\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{1}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{1}$
first order in $\left[\mathrm{NH}_{4}{ }^{+}\right]$
first order in $\left[\mathrm{NO}_{2}{ }^{-}\right]$
second order overall
given rate law: determine k (rate constant) HW10 \#64-65

Experiment	Initial Concentration of NH_{4}^{+}	Initial Concentration of NO_{2}^{-}	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M	0.010 M	$2.50 \times 10^{-}$
3	0.200 M	0.010 M	5.40×10^{-7}

now that we know the order of the reaction to get k use any 'experiment' (or average of all)
$\left\{\right.$ initial rate of disappearance of $\left.\mathrm{NH}_{4}^{+}\right\}=-\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{1}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{1}$ from exp 1
$1.35 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=k\left(0.100 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1}\left(0.0050 \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}\right)^{1}$

$$
k=2.70 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1}
$$

from exp 3
$5.40 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=k\left(0.200 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1}\left(0.010 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1}$

$$
k=2.70 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1}
$$

Chemistry 1B, Fall 2016
 Topics 21-22

more complicated

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

remember same reaction in stop-flow apparatus, earlier slide
more complicated (see Table 15.5)
$\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$

$\left[\mathrm{BrO}_{3}^{-}\right]^{\mathrm{n}}: \exp 1-2 \quad\left[\mathrm{BrO}_{3}^{-}\right]$doubles, rate $\mathrm{x} 2 \Rightarrow \mathrm{n}=1$
$\left[\mathrm{Br}^{-}\right]^{m}$: $\exp 2-3\left[\mathrm{Br}^{-}\right]$doubles, rate $\times 2 \Rightarrow m=1$
$\left[\mathrm{H}^{+}\right]^{p}: \exp 1-4 \quad\left[\mathrm{H}^{+}\right]$doubles, \quad rate $\times 4 \Rightarrow \mathrm{p}=2 \quad 4=[2]^{2}$

Chemistry 1B, Fall 2016
 Topics 21-22

order of the reaction

$$
\text { rate }=-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]^{1}\left[\mathrm{Br}^{-}\right]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

first order in $\left[\mathrm{BrO}_{3}^{-}\right]$
first order in $[\mathrm{Br}-]$
second order in $\left[\mathrm{H}^{+}\right]$
fourth order overall
after determining order, evaluate rate constant
$\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathbf{3} \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$

$$
\text { rate }=-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]^{1}\left[\mathrm{Br}^{-}\right]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

$\left.$| | Initial
 Concentration
 Experiment
 BrO$_{3}^{-}(\mathrm{mol} / \mathrm{L})$ | Initial
 Concentration
 of $\mathrm{Br}^{-}(\mathrm{mol} / \mathrm{L})$ | Initial
 Concentration
 of $\mathrm{H}^{+}(\mathrm{mol} / \mathrm{L})$ |
| :---: | :---: | :---: | :---: | | Measured |
| :---: |
| $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$ | \right\rvert\,

rate $=k \times\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1} \times\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{1} \times\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}=8.0 \times 10^{-4} L^{-1} \mathrm{~s}^{-1}$

$$
k=8.00 \mathrm{~L}^{3} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}
$$

will be identical (within experimental) using any of the 'experiments'

Chemistry 1B, Fall 2016
 Topics 21-22

skills for HW and final

differential rate expressions
-Write rate expression in terms of reactant concentrations

- Determine order for each reactant from initial rate data
\checkmark • Determine overall rate order
\checkmark • Determine rate constant
integral rate expression
- Determine order of reaction from plot of 'concentration' vs time
- Half-life of a reaction

integrated rate expression

differential rate gives change of reactant or product concentrations with time

$$
-\frac{d[\text { reactant }]}{d t}=\cdots
$$

integrated rate gives value of reactant or product concentrations with time

$$
\text { [reactant] }=f(t)
$$

Chemistry 1B, Fall 2016
 Topics 21-22

math 11 or 19

$$
\begin{aligned}
& \int d t=? \\
& \int \frac{d x}{x}=?
\end{aligned}
$$

$$
\int \frac{d x}{x^{2}}=\text { ? }
$$

integrated rate expression for first-order reaction

differential rate law: $-\frac{d[A]}{d t}=k[A] \quad$ first order disappearance of reactants

$$
\frac{d[A]}{[A]}=-k d t
$$

$$
\int \frac{d[A]}{[A]}=-\int k d t
$$

$$
\ln [A]=-k t+C
$$

integrated rate law: $\ln [A]=-k \underline{t}+\ln [A]_{0} \quad$ when $t=0 \quad[A]=[A]_{0}$
first order: a plot of $\ln [A]$ vs t would be a
straight line with slope $-k$ and intercept $\ln [A]_{0}$

Chemistry 1B, Fall 2016
 Topics 21-22

integrated first order reaction

$2 \mathrm{~N}_{2} \mathrm{O}_{5}($ soln $) \rightarrow \mathbf{4 N O} \mathbf{2}_{2}($ soln $)+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$
rate $=-\frac{d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]^{n}$

How could we tell
[$\mathrm{N}_{2} \mathrm{O}_{5}$] vs t
if $\mathrm{n}=1$ (first order in $\mathrm{N}_{2} \mathrm{O}_{5}$)?
[not using multiple experiments with various initial concentrations]

integrated rate law (first-order)

$$
\ln \left[N_{2} O_{5}\right]=-\underline{k t}+\underline{\ln \left[N_{2} O_{5}\right]_{0}} \text { (if reaction is first order) }
$$

plot $\ln \left[\mathbf{N}_{2} \mathrm{O}_{5}\right]$ vs \mathbf{t}
do we get straight line ??
(yes $n=1$, no $n \neq 1$)

YES !! $\mathrm{n}=1$

it is first-order
slope $=-k$ $t=0$ intercept is $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ 。

$$
\text { rate }=-\frac{d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]^{1}
$$

Chemistry 1B, Fall 2016
 Topics 21-22

other integrated rate laws

$$
\begin{array}{cc}
-\frac{d[A]}{d t}=k & \text { zero-th order reaction; differential rate law } \\
\int d[A]=-k \int d t & {[A]=-k t+[A]_{0}}
\end{array} \begin{aligned}
& \text { zeroth order reaction; } \\
& \text { integrated rate law }
\end{aligned}
$$

plot [A] vs t gives straight line
$-\frac{d[A]}{d t}=k[A]^{2} \quad$ second order reaction; differential rate law $\int \frac{d[A]}{[A]^{2}}=-k \int d t \quad \frac{1}{[A]}=+k t+\frac{1}{[A]_{0}} \quad \begin{aligned} & \text { second order reaction; } \\ & \text { integrated rate law }\end{aligned}$
plot $[A]^{-1}$ vs t gives straight line

more complicated integrated rate laws (don't fret)

$$
-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]^{1}\left[\mathrm{Br}^{-}\right]^{1}\left[\mathrm{H}^{+}\right]^{2}
$$

more complicated to get integrated rate-laws for rate expressions which depend on several reactant concentrations :
use $\left[\mathrm{Br}^{-}\right]_{\mathrm{o}}$ and $\left[\mathrm{H}^{+}\right]_{\mathrm{o}} \gg\left[\mathrm{BrO}_{3}{ }^{-}\right]_{0}$; plot In $\left[\mathrm{BrO}_{3}{ }^{-}\right]$vs t
$\left[\mathrm{Br}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$change relatively little (constant)
reaction 'pseudo' first-order; i.e rate $\approx\left(k\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}\right)\left[\mathrm{BrO}_{3}^{-}\right]^{1}$

$$
\approx \approx \text { constant }=\left(\mathrm{k}[\mathrm{Br}-]_{o}\left[\mathrm{H}^{+}\right]_{o}^{2}\right)
$$

Chemistry 1B, Fall 2016 Topics 21-22

first order or second order ??? Example 15.5 and (HW10 \#66)

$$
2 \mathrm{C}_{4} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{12} \quad-\frac{\mathrm{d}\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{6}\right] \text { ? }
$$

same rate data plotted two ways

(a) $\ln \left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ vs t
straight line \Rightarrow first order

straight line \Rightarrow second order

$t_{1 / 2}$ half-life vs rate constant

time for concentration of reactant to drop by factor of 2
$[A]_{t+1 / 2}=\frac{1}{2}[A]_{t} \quad$ e.g. when half the original reactant left $[\mathrm{A}]_{t / 2}=\frac{1}{2}[A]_{o}$
first-order reaction (e.g. radioactive decay)
$\ln [A]_{t}=-k t+\ln [A]_{0}$ and $\ln [A]_{t+t_{/ / 2}}=-k\left(t+t_{1 / 2}\right)+\ln [A]_{0}$
$\ln [A]_{t}-\ln [A]_{t+t / 2}=\ln \left(\frac{[A]_{t}}{[A]_{t+t / 2}}\right)=k t_{1 / 2}$

$\frac{[A]_{t}}{[A]_{t+t / 2}}=2$ def of $t_{1 / 2}$

$$
\begin{aligned}
& \ln (2)=k t_{1 / 2} \\
& t_{1 / 2}=\frac{\ln (2)}{k}=\frac{0.693}{k} \quad \text { eqn } 15.3
\end{aligned}
$$

Chemistry 1B, Fall 2016
 Topics 21-22

$t_{1 / 2}$ half-life vs rate constant zero ${ }^{\text {th }}$ and $2^{\text {nd }}$ order
still the definition of half-life
time for concentration of reactant to drop by factor of 2

$$
[A]_{t+1 / 2}=\frac{1}{2}[A]_{t} \quad \text { e.g. when half the original reactant left }[\mathrm{A}]_{t_{1 / 2}}=\frac{1}{2}[A]_{o}
$$

but:


```
summary (also understand section 15.5; 1-5, 6*)
```

TABLE 15.6
Summary of the Kinetics for Reactions of the Type $a \mathrm{~A} \longrightarrow$ Products That Are Zero, First, or Second Order in [A]

	Order		
	Zero	First	Second
Rate law	Rate $=k$	Rate $=k[\mathrm{~A}]$	Rate $=k[\mathrm{~A}]^{2}$
Integrated rate law	$[\mathrm{A}]=-k t+[\mathrm{A}]_{0}$	$\ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0}$	$\frac{1}{[\mathrm{~A}]}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
Plot needed to give a straight line	[A] versus t	$\ln [A]$ versus t	$\frac{1}{[\mathrm{~A}]} \text { versus } t$
Relationship of rate constant to the slope of the	Slope $=-k$	Slope $=-k$	$\text { Slope }=k$
straight line Half-life	$t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}$	$t_{1 / 2}=\frac{0.693}{k}$	$t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}$

know how to use; all needed formulas given on exam

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B
Sample Final Examination Questions

wavelength range of visible light: $\lambda \approx 3.5 \times 10^{-7} \mathrm{~m}$ to $7.0 \times 10^{.7} \mathrm{~m}$

end of topics 21-22

Chemistry 1B, Fall 2016
 Topics 21-22

initial rate (2 vs 3)

initial rate of disappearance $\left[\mathrm{NH}_{4}^{+}\right]=-\frac{d\left[\mathrm{NH}_{4}^{+}\right]_{0}}{d t}=k\left[\mathrm{NH}_{4}^{+}\right]_{0}^{m}\left[\mathrm{NO}_{2}^{-}\right]_{0}^{n}$

Experiment	Initial Concentration of NH_{4}^{+}	Initial Concentration of $\mathrm{NO}_{2}{ }^{-}$	Initial Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.100 M	0.0050 M	1.35×10^{-7}
2	0.100 M	0.010 M	2.70×10^{-7}
3	0.200 M	0.010 M	5.40×10^{-7}

$$
\begin{aligned}
& \text { rate } & =k\left[\mathrm{NH}_{4}^{+}\right]^{m} \quad\left[\mathrm{NO}_{2}^{-}\right]^{n} \\
3: & 5.40 \times 10^{-7} & =k[0.200 \mathrm{M}]^{m}[.010 \mathrm{M}]^{n} \\
2: & 2.70 \times 10^{-7} & =k[0.100 \mathrm{M}]^{m}[.010 M]^{n}
\end{aligned}
$$

divide $3 / 2 \quad \frac{3}{2}: \quad \frac{5.40 \times 10^{-7}}{2.70 \times 10^{-7}}=\frac{k}{k} \frac{[0.200 M]^{m}}{[0.100 M]^{m}} \frac{[.010 M]^{n}}{[.010 M]^{n}}$

$$
\frac{3}{2}: \quad 2.00=[2]^{m} \quad \Rightarrow m=1
$$

$$
(x \text { rate })=[x \text { conc }]^{n}
$$

initial rate $(x$ rate $)=[x \text { conc }]^{n}$
initial rate $=\ldots .[A]_{0}{ }^{n} \quad n^{\text {th }}$ order in A
double initial concentration of A i.e. [2 x]

Chemistry 1B, Fall 2016 Topics 21-22

$z^{\text {zero }}{ }^{\text {th }}$ order reaction: fully occupied surface catalyst
decomposition of $\mathrm{N}_{2} \mathrm{O}$ on platinum surface
$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{\text { Pt(surface })} 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$-\frac{d\left[N_{2} O\right]}{d t}=k=k\left[N_{2} O\right]^{0} \quad$ zero $^{\text {th }}$ order

$000 \mathrm{~N}_{2} \mathrm{O}$
(a)
(b)
after surface covered, higher [$\mathrm{N}_{2} \mathrm{O}$] leads to no greater rate of decomposition

