

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B, Fall 2016 Topics 21-22

initial r	ate (2	vs 3)				_
initial rate	of disap	pearance $\left[NH_{4}^{+} \right]$	$\left] = -\frac{d\left[NH_4^+\right]}{dt}$	$\frac{1}{2} = k \left[NH_4^+ \right]_0^m$	$\left[NO_2^{-}\right]_0^n$	
Exp	eriment	Initial Concentration of NH4*	Initial Concentration of NO ₂ ⁻	Initial Rate (mol L ⁻¹ s ⁻¹)		
	1 2 3	0.100 M 0.100 M 0.200 M	0.0050 M 0.010 M 0.010 M	$\frac{1.35 \times 10^{-7}}{2.70 \times 10^{-7}}$ 5.40×10^{-7}]	
	3.	rate = 10^{-7}	$[NH_4^+]^m [\Lambda_4^+]^m = [\Lambda_4^+]^m [0.200M_4]^m [0.1]^m [0.1]^$	$[O_2^-]^n$ $[O_2^-]^n$		
divide $3/2$ $\frac{3}{2}$:		$2.70 \times 10^{-7} = 1$				
		$\frac{5.40 \times 10^{-7}}{2.70 \times 10^{-7}} = \frac{k}{k} \frac{[0.200M]^m}{[0.100M]^m} \frac{[.010M]^n}{[.010M]^n}$				
	$\frac{3}{2}$:	2.00 = (x rate)=	$\begin{bmatrix} 2 \end{bmatrix}^m \Longrightarrow m =$ $[x \ conc]^n$	= 1		45

