Chemistry 1B, Fall 2016 Topic 23

Chemistry 1B

Fall 2016
Topic 23
[more] Chemical Kinetics

goals for topic 23

- kinetics and mechanism of chemical reaction
- energy profile and reaction coordinate
- activation energy and temperature dependence of rate constant
- catalysis

Chemistry 1B, Fall 2016 Topic 23

chemical kinetics

elementary reactions
reaction mechanisms
reaction energy profile and the reaction coordinate diagram
have already covered worksheet 10 sections I-IV

Chemistry 1B, Fall 2016 Topic 23

goals for video 13

- elementary reactions
- kinetics and the mechanism of a chemical reaction
- energy profile and reaction coordinate

Chemistry 1B, Fall 2016 Topic 23

kinetics and mechanism of reaction

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \text { at } \mathrm{T}<500 \mathrm{~K}
$$

if the reaction was a collision between a NO_{2} molecule and a CO molecule one might expect for the differential rate law:

$$
-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k\left[\mathrm{NO}_{2}\right][\mathrm{CO}]>
$$

but the observed rate of reaction is:

$$
-\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k\left[\mathrm{NO}_{2}\right]^{2}
$$

You might ask ?

elementary reactions

$$
\begin{gathered}
\text { the observed kinetics }-\frac{d\left[N O_{2}\right]}{d t}=k\left[N O_{2}\right]^{2} \\
\mathbf{N O}_{\mathbf{2}}(\mathbf{g})+\mathbf{C O}(\mathbf{g}) \rightarrow \mathbf{N O}(\mathbf{g})+\mathbf{C O}_{\mathbf{2}}(\mathbf{g}) \text { at } \mathbf{T}<500 \mathrm{~K}
\end{gathered}
$$

is not consistent with this stoichiometric equation in representing the actual molecular collisions involved in the reaction
ok?? but first let's look at reactions where the stoichiometric equation DOES represent the actual collision process. these are called ELEMENTARY REACTIONS

Chemistry 1B, Fall 2016 Topic 23

kinetics and mechanism of reaction

back to the question: so what's up DOC ??

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \text { at } \mathrm{T}<500 \mathrm{~K}
$$

answer: the above (stoichiometric) equation NO_{2} colliding with CO does NOT represent the molecular mechanism (molecular steps of the reaction)
in actuality: the reaction takes place in two steps

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \quad \text { slow }
$$

$$
\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \quad \text { fast } \quad \begin{gathered}
\text { net } \\
\text { reaction }
\end{gathered}
$$

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \text { overall reaction }
$$

mechanism of the reaction $\mathbf{N O}_{\mathbf{2}}(\mathbf{g})+\mathbf{C O}(\mathbf{g}) \longrightarrow \mathbf{N O}(\mathbf{g})+\mathbf{C O}_{\mathbf{2}}(\mathbf{g}) \quad$ overall reaction $(\tau<500 \kappa)$

- The two steps are the actual molecular processes by which the reaction occurs and is the MECHANISM the reaction
- They represent ELEMENTARY reactions
- The combination of elementary reactions must sum to the overall stoichiometry
- Species [e.g. $\mathrm{NO}_{3}(\mathrm{~g})$] appearing in the steps of the mechanism, but not the overall reaction are REACTION INTERMEDIATES

Chemistry 1B, Fall 2016 Topic 23

how to get rate law from mechanism of the reaction

T<500k	$k_{\text {slow }}$	
$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$		slow
	$k_{\text {fast }}$	
$\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$	$\longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$	fast

- rates for individual steps come directly from the stoichiometry of the ELEMENTARY reactions
- how to combine rates of elementary reactions to get overall rate equation
LOTS OF TRICKS (but we don't have time for many)
- our ONE example will be slow reaction followed by rapid reaction (like above reaction)
how to get rate law from mechanism of the reaction
$\mathrm{T}<500 \mathrm{~K}$

$\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \xrightarrow{k_{\text {fast }}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$ fast
since these are ELEMENTARY reactions:

$$
\begin{aligned}
& -\frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k_{\text {slow }}\left[\mathrm{NO}_{2}\right]^{2}=+2 \frac{d\left[\mathrm{NO}_{3}\right]}{d t} \text { slow } \\
& -\frac{d[\mathrm{CO}]}{d t}=k_{\text {fast }}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]
\end{aligned}
$$

- since $\mathrm{k}_{\text {fast }} \gg \mathrm{k}_{\text {slow }}$ as soon as slow reaction produces NO_{3} the fast reaction occurs
- the total rate is the just the rate of the slow step total rate $=k_{\text {slow }}\left[\mathrm{NO}_{2}\right]^{2}$ (2nd order in $\mathrm{NO}_{2}, 0^{\text {th }}$ order in CO)

Chemistry 1B, Fall 2016 Topic 23

factoids about rate laws and mechanisms

- in general the rate law cannot be written in terms of the stoichiometric coefficients of the overall reaction
- the rate law for an elementary reaction IS determined by the molecularity (stoichiometry) of the individual step
- the overall rate law is obtained from combining rate laws of elementary reactions
- an overall reaction where the measured rate law and the stoichiometric coefficients 'match' MAY or MAY NOT be an elementary reaction
the actual process of determining mechanism of a reaction

Chemistry 1B, Fall 2016
 Topic 23

DNA synthesizer kinetics

$k_{\text {on }}=1.2 \times 10^{7} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}, k_{\text {off }}=0.06 \mathrm{~s}^{-1}, k_{1}=1.25 \times 10^{7} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}, k_{-1}=$
$250 \mathrm{~s}^{-1}, k_{2}=50 \mathrm{~s}^{-1}, k_{-2}=3 \mathrm{~s}^{-1}, k_{3}=9.5 \times 10^{5} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}, k_{-3}=100 \mathrm{~s}^{-1}, k_{4}$ $=150 \mathrm{~s}^{-1}, k_{-4}=40 \mathrm{~s}^{-1}, k_{5}=100 \mathrm{~s}^{-1}, k_{-5}=9.5 \times 10^{5} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}, k_{6}=4 \mathrm{~s}^{-1}$, $\left.k_{-6}=4 \mathrm{~s}^{-1}, k_{7}=60 \mathrm{~s}^{-1}, k_{-7}=1.45 \times 10^{4} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}.\right)$

the reaction coordinate and course of a chemical reaction

$E \uparrow$

- energy vs reaction coordinate (progress of reaction reactants -products)
- transition state (maxima of E vs reaction coordinate)
[$\mathrm{N}---\mathrm{Br}$ bonds breaking, $\mathrm{Br}--\mathrm{Br}$ bond forming]
- activation energy ($\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\text {transition state }}-\mathrm{E}_{\text {reactants }}$)
- reverse activation energy ($\mathrm{E}_{\text {a rev }}=\mathrm{E}_{\text {transition state }}-\mathrm{E}_{\text {products }}$)
- $\Delta \mathrm{E}_{\text {reaction }}(\Delta \mathrm{H})=\left(\mathrm{E}_{\text {products }}-\mathrm{E}_{\text {reactants }}\right)$

Chemistry 1B, Fall 2016 Topic 23

multi-step reaction

('stable') Reaction Intermediate is at a relative minimum along curve

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \text { at } \mathrm{T}<500 \mathrm{~K}
$$

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \text { slow }
$$

$$
\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \quad \text { fast }
$$

Chemistry 1B, Fall 2016 Topic 23

onto more kinetics !!!

Chemistry 1B, Fall 2016 Topic 23

Zumdahl figure $15.8 \quad \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

Step 1

Step 2

$\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$ fast

elementary reactions

- an elementary reaction represents the molecules 'colliding' in an actual step of the overall reaction
- the rate law for an elementary reaction IIS determined by the stoichiometry of the elementary reaction (the order of each reactant is its stoichiometric coefficient)
- the overall order of an elementary reaction is its molecularity
- the 'sum' of the individual elementary reactions must yield the equation for the overall reaction

Chemistry 1B, Fall 2016 Topic 23

elementary reactions and 'molecularity'
elementary reaction
molecularity
${ }_{6}^{14} C \xrightarrow{k_{1}}{ }_{7}^{14} N+\beta$ (particle) nuclear decay
$-\frac{d\left[{ }_{6}^{14} C\right]}{d t}=k_{1}\left[{ }_{6}^{14} C\right]$ first-order
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \xrightarrow{\mathrm{k}_{2}} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$
$-\frac{d\left[\mathrm{O}_{3}(\mathrm{~g})\right]}{d t}=k_{2}\left[\mathrm{O}_{3}\right][\mathrm{NO}]$ second-order
$2 \mathrm{Cl} \cdot(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{k_{3}} 2 \mathrm{Cl}_{2}(\mathrm{~g})$
$-\frac{d\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]}{d t}=k_{3}[\mathrm{Cl} \cdot]^{2}\left[\mathrm{Cl}_{2}\right]$ third-order

elementary or not ???

$$
\left.\begin{array}{rl}
\text { if } \mathrm{A}+2 \mathrm{~B} & \rightarrow \mathrm{C} \quad \text { IS an elementary reaction } \\
\text { then }
\end{array}\right] \begin{aligned}
-\frac{d[A]}{d t}=k[A][B]^{2} \quad \text { termolecular } \quad \text { TRUE }
\end{aligned}
$$

if the measured rate law for $A+2 B \rightarrow C \quad$ is

$$
-\frac{d[A]}{d t}=k[A][B]^{2} \quad \text { third order }
$$ then

$$
A+2 B \rightarrow C \quad \text { MAY or MAY NOT be }
$$

Chemistry 1B, Fall 2016 Topic 23

- Temperature dependence of rate constant - Catalysis

collision theory and effect of temperature on rate constant

Chemistry 1B, Fall 2016 Topic 23

Arrhenius equation

$$
K=\underbrace{Z D} e^{-E_{a} / R T}
$$

Svante August Arrhenius (19 February $1859-$ 2 October 1927) was a Swedish scientist, originally a physicist, but often referred to as a chemist, and one of the founders of the science of physical chemistry.

$$
\begin{aligned}
k_{T_{2}} & =A e^{-E_{a} / R T_{2}} \\
k_{T_{1}} & =A e^{-E_{a} / R T_{1}} \\
\frac{k_{T_{2}}}{k_{T_{1}}} & =\frac{e^{-E_{a} / R T_{2}}}{e^{-E_{a} / R T_{1}}}=e^{-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)} \\
k_{T_{2}} & =k_{T_{1}} e^{-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)} \\
\ln k_{T_{2}} & =\ln k_{T_{1}}+\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{aligned}
$$

$$
\text { know } k_{T 1} \text { and } E_{a} \Rightarrow \text { get } k_{T 2} \quad \text { or } \quad \text { measure } k_{T 1} \text { and } k_{T 2} \Rightarrow \text { get } E_{a}
$$

Chemistry 1B, Fall 2016 Topic 23

Example (by request)

A first-order reaction with activation energy $E_{a}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ has a rate constant of $\mathrm{k}_{300}=3.0 \times 10^{-1} \mathrm{sec}^{-1}$ at 300 K .

What is the rate constant at 310 K ?

What is the ratio of $\mathrm{k}_{310} / \mathrm{k}_{300}$?
I

Chemistry 1B, Fall 2016 Topic 23

adage raise $10 \mathrm{~K} \longrightarrow$ twice as fast

Arrhenius equation

From Wikipedia, the free encyclopedia
The Arrhenius equation is a simple, but remarkably accurate, formula for the temperature dependence of the rate constant, and therefore, rate of a chemical reaction. ${ }^{[1]}$ The equation was first proposed by the Dutch chemist J. H. van 't Hoff in 1884; five years later in 1889, the Swedish chemist Svante Arrhenius provided a physical justification and interpretation for it. Nowadays it is best seen as an empirical relationship. ${ }^{[2]}$ It can be used to model the temperature-variance of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions.

A historically useful generalization supported by the Arrhenius equation is that, for many common chemical reactions at room temperature, the reaction rate doubles for every 10 degree Celsius increase in temperature.

$$
\mathrm{E}_{\mathrm{a}} \approx 50 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } \mathrm{T}=298 \mathrm{~K}
$$

catalysis

Chemistry 1B, Fall 2016
 Topic 23

Catalysis and activation energy

general types of catalysis

- enzymatic catalysis
e.g. carbonic anhydrase catalyzes
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \stackrel{\text { caranh }}{\rightleftarrows} \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}$
removing CO_{2} formed in cells during metabolism

- surface (heterogeneous) catalysis
e.g. platinum and rhodium metallic particles in catalytic converter
converts $\mathrm{CO}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$ and NO_{2} to CO_{2} and N_{2}

$$
\begin{aligned}
& 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{CO}
\end{aligned}
$$

- homogeneous catalysis (ozone depletion)
e.g. $\mathrm{O}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{E}_{\mathrm{a}}=17.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ uncatalyzed
catalyzed by Cl^{-}
from $\mathrm{CCl}_{2} \mathrm{~F}_{2}+h v \rightarrow \mathrm{CCIF}_{2}+\mathrm{Cl}^{-}$
$\mathrm{Cl}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{ClO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{Ea}=2.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ catalyzed
$\mathrm{O}(\mathrm{g})+\mathrm{ClO}(\mathrm{g}) \rightarrow \mathrm{Cl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{Ea}=0.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ catalyzed

$\overline{\mathrm{O}}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g})$

Chemistry 1B, Fall 2016 Topic 23

$$
\mathrm{O}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g})
$$

http://www.kentchemistry.com/links/Kinetics/PEDiagrams.htm

Chemistry 1B, Fall 2016 Topic 23

chemical kinetics (chapter 15)

$$
\mathrm{N} \equiv \mathrm{C}-\mathrm{CH}_{3}+\mathrm{I}^{-}
$$

Kinetics: How fast a reaction proceeds, and the molecular steps involved in a reaction [the mechanism of a reaction].

Catalysis

Chemistry 1B, Fall 2016 Topic 23

goals for lecture 23

$\boxed{\square} \cdot$ kinetics and mechanism of chemical reaction
\checkmark • energy profile and reaction coordinate

- activation energy and temperature dependence of rate constant
, • catalysis

Chemistry 1B, Fall 2016 Topic 23

```
p the orientation factor (2 ONBr }\longrightarrow\mathbf{2NO}+\mp@subsup{\textrm{Br}}{2}{}
```

what relative orientation of two ONBr molecules will lead to a reaction?
($\mathrm{Br}-----\mathrm{Br}$ bond formation)

(c)
the more 'particular' the reaction is about alignment of colliding molecule the smaller the p factor
two-step, slow then fast, first-order with reaction intermediate HW\#10 probs 67 and 68

reaction coordinate
(progress of reaction)
http://guweb2.gonzaga.edu/faculty/cronk/CHEM240/images/reaction_coordinate_SN1.gif

Chemistry 1B, Fall 2016 Topic 23

Example (by request)

A first-order reaction with activation energy $\mathrm{E}_{\mathrm{a}}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ has a rate constant of $\mathrm{k}_{300}=3.0 \times 10^{-1} \mathrm{sec}^{-1}$ at 300 K .

What is the rate constant at 310 K ?

What is the ratio of $\mathrm{k}_{310} / \mathrm{k}_{300}$?
$\ln k_{T}=\ln A-\frac{E_{a}}{R T}$

1. $\ln k_{310}=\ln A-\frac{E_{a}}{R(310 K)}$
2. $\ln k_{300}=\ln A-\frac{E_{a}}{R(300 K)}$
(same A and E_{a})
subtract: 1-2
$\ln \left(\frac{k_{310}}{k_{300}}\right)=-\frac{E_{a}}{R}\left(\frac{1}{310 K}-\frac{1}{300 K}\right)$

$$
=-\frac{50 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}}\left(\frac{1}{310 K}-\frac{1}{300 K}\right) \quad \text { note unitless }
$$

example continued

$\ln \left(\frac{k_{310}}{k_{300}}\right)=-\frac{E_{a}}{R}\left(\frac{1}{310 K}-\frac{1}{300 K}\right)$

$$
=-\frac{50 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}}\left(\frac{1}{310 K}-\frac{1}{300 K}\right) \quad \text { note unitless }
$$

$\ln \left(\frac{k_{310}}{k_{300}}\right)=0.6466$

$$
k_{310}=k_{300} \times e^{0.6466}=\left(3.0 \times 10^{-1} \mathrm{sec}^{-1}\right) \times 1.91=0.574 \mathrm{sec}^{-1}
$$

$$
\ln \left(\frac{k_{310}}{k_{300}}\right)=0.6466 \Rightarrow \frac{k_{310}}{k_{300}}=1.91 \approx 2
$$

Ofd adage:

raise T by $10^{\circ}(300 \rightarrow 310)$ double reaction rate ($E_{a} \approx 50 \mathrm{~kJ} / \mathrm{mol}$)

