

Diemistry 18-46 Feil 2018, Study Guide end Warksheer 321	
Jasming Objections and Workshart VII	Chemistry 10-44, FaX 2016, Study Guide and Warksheet XI
Chaminary 10 Al Part 9016	dixi
Chemistry 18-AL Fail 2010	 dt represents the of a Y.
tactures (21-22) che micai kinetika	II. ky and k, are the and
To date CHIMID-AL has fox used on the structure and chemical properties of atoms and	respectively
molecules. Chemical kinetics, the final topic of the course, shifts attention to chemical	iv. the order of the above reaction in reactant A is
reactions. In particular we will study how measuring the factors affecting the rate of a observing reaction aliver class to the region of individual stage. I.e. the mechanism he which	
the reaction proceeds.	3. The expression
	$-\frac{d(A)_k}{dt} = k_1 [A]_k^* [B]_k^*$
	describes the rate of reaction when and thus is called the
 Basic Concepts and Definitions 	rate law. Here the total rate order is
 For a chemical reaction, what are the differences between the information that is provided by thermodynamics (eq olidoi on) (CHEM-1A, CHEM-1C) and kinetics ? 	4. If $-\frac{d[d]}{dt} = k_{f}[d]^{*}$, the instantoneous rate of reaction is given by the
	of a plot of [A] vst.
	III. Determining order of a reaction
	1. For a reaction all reactant concentrations are kept constant except for [A] ₀
	 If The initial rate increases 9-fold when [A]₀ is tripled (i.e. [A]₀ increased 3-fold), the
	order of the reaction in [A] is
2. Ina kinetics experiment one measures decreases inor increases in	 If the reaction was third-order in [A] and the concentration of [A]₀ is doubled, the
13	initial rate of reaction increases by a factor of
II. Differentializate laws	 If the rate of reaction doesn't change when [A]₀ is doubled, the order of the reaction
1. The rate at which a reaction occurs is written in terms of the of the	in reactant A is
reactants (raised to powers) since for higher	 A reaction has an initial reaction rate (rose of [A]) that is inservice in [A], and second-other 20 and
there are a greater number of molecular	in [B] ₂ . For the initial concentrations of [A] ₂ =1 M and [B] ₂ =2 M the initial rate is Lief
allowing the possibility that the reaction will proceed more	The rate constant for the reaction is
rapid ly.	
	17. Integrated rate expressions
2. In the differential rate expression:	1. While the differential rate expression gives the of the concentration
$d[X] = d[Y] = b [d]^{*} [X]^{*} = b [d]^{*} [X]^{*}$	of a reactant or product with, the integrated rate expression gives the
at at my my my my my log	total of the reactant or product as a function of
L represents the of a X.	
	3
1	

$$k_{T_{2}} = A \ e^{-E_{a}/RT_{2}}$$

$$k_{T_{1}} = A \ e^{-E_{a}/RT_{1}}$$

$$\frac{k_{T_{2}}}{k_{T_{1}}} = \frac{e^{-E_{a}/RT_{1}}}{e^{-E_{a}/RT_{1}}} = e^{-\frac{E_{a}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

$$k_{T_{2}} = k_{T_{1}}e^{-\frac{E_{a}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

$$\ln k_{T_{2}} = \ln k_{T_{1}} + \frac{E_{a}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \quad \text{eqn 15.11}$$

$$k_{ROW \ k_{T1}} \ and \ E_{a} \Rightarrow get \ k_{T2} \quad or \quad measure \ k_{T1} \ and \ k_{T2} \Rightarrow get \ E_{a}} \qquad 28$$

Example (by request)	
A first-order reaction with activation energy $E_a = 50 \text{ kJ mol}^{-1}$ has a rate constant of $k_{300} = 3.0 \times 10^{-1} \text{ sec}^{-1}$ at 300K.	
What is the ratio of k_{310}/k_{300} ?	
L .	
	30

