## Chemistry 1B-AL Homework #9 (#60-#63) Required (submit via WebAssign)

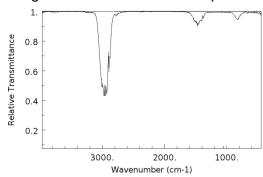
## SAMPLE SPECTROSCOPY QUESTIONS

| bond | approximate vibrational<br>group frequency<br>(cm <sup>-1</sup> ) |
|------|-------------------------------------------------------------------|
| C-C  | ~ 1000–1400                                                       |
| C=C  | ~1600                                                             |
| C-O  | ~ 1100                                                            |
| C=O  | ~ 1800                                                            |
| C-N  | ~ 1000                                                            |
| C≡N  | ~ 2100–2200                                                       |
| C-H  | ~ 2800–3200                                                       |
| N-H  | ~ 3300 (weak)<br>~1600 ( intense)                                 |
| О-Н  | ~ 3600                                                            |
| C-CI | ~ 550-800                                                         |

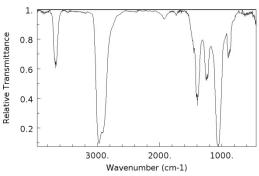
| proble | em shoul | orrect choice for each part (students interested in getting points for this d answer using the letter representing the correct molecule and es or formulas !!)                                                                                                                           |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | (i) L    | owest energy photon: <b>a.</b> IR; <b>b.</b> radiowave: <b>c.</b> X-ray; <b>d.</b> UV                                                                                                                                                                                                    |
|        | ( ii )   | Highest energy electronic transition (generally): <b>a.</b> $\sigma \rightarrow \sigma^*$ ; <b>b.</b> $n \rightarrow \pi^*$ ; <b>c.</b> $\pi \rightarrow \pi^*$ ; <b>d.</b> $n \rightarrow \sigma^*$                                                                                     |
|        | ( iii )  | Wavelength range where absorbed photons flip nuclear (hydrogen nuclei) spins: <b>a.</b> UV-VIS; <b>b.</b> far UV; <b>c</b> IR; <b>d.</b> radiowave                                                                                                                                       |
|        | ( iv )   | Molecule with an infrared absorptions near 1800 cm <sup>-1</sup> and 1600 cm <sup>-1</sup> a. CH <sub>3</sub> CH <sub>2</sub> OH; b. CH <sub>3</sub> CH <sub>2</sub> COCH <sub>3</sub> ; c. CH <sub>2</sub> CHCOCH <sub>3</sub> ; d. CH <sub>3</sub> OCH <sub>2</sub> CH <sub>2</sub> OH |

| 61. Provide the name which is descri                    | bes each of the following:                                                                                                                                          |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i.                                                      | Wavelength region for $\sigma{\to}\sigma^*$ transitions                                                                                                             |
| ii.                                                     | Absorption of a photon and "slow" return to ground state by way of intermediate electronic state with photon emitted of longer wavelength than the photon absorbed. |
| iii.                                                    | Spectral region where photons excite molecular vibrations                                                                                                           |
| iv.                                                     | Return from excited state to ground state releasing energy as heat (motion of molecules)                                                                            |
| V.                                                      | Wavelength region used in ESCA spectroscopy                                                                                                                         |
| vi.                                                     | Absorption of a photon and "fast" return to ground state with photon emitted of equal (or slightly longer) wavelength than the photon absorbed.                     |
| vii.                                                    | Wavelength region for $\pi \rightarrow \pi^*$ transitions                                                                                                           |
| Viii.                                                   | Type of electronic excitation which could absorb light in visible spectral region                                                                                   |
| ix.                                                     | Molecule responsible for absorption of light in the eye (name of protein plus chromophore).                                                                         |
| 62.<br>(a) Number of CH <sub>3</sub> CH <sub>2</sub> CH | of peaks (major) in the <sup>1</sup> H-NMR spectrum of n-butane<br>I <sub>2</sub> CH <sub>3</sub>                                                                   |

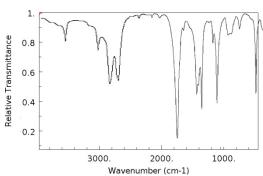
a. Draw the Lewis structures for:


I. acetaldehyde C<sub>2</sub>H<sub>4</sub>O (CH<sub>3</sub>CHO)

II. ethane  $C_2H_6$  (CH<sub>3</sub>CH<sub>3</sub>)


III ethyl alcohol C<sub>2</sub>H<sub>6</sub>O (CH<sub>3</sub>CH<sub>2</sub>OH )

b. The three IR spectra below correspond to the three compounds in part (a) above. Match the compounds with their respective IR spectra (the needed group frequencies are on the front page). Your answers to i, ii, and iii the below should be selected from I, II, and III, corresponding to the three molecules in part a:


(i)



\_\_\_\_(ii)



\_\_\_\_\_(iii)

