Learning Objectives and Worksheet VIII Chemistry 1B-AL Fall 2016

Lectures (13-14) Molecular Orbital Theory of Covalent Bonding

WE WILL BE COVERING CHAPTER 14 IN A DIFFERENT ORDER THAN THE TEXT: first we will cover the quantum mechanics of covalent bond formation (pp 676-688, lectures 15-16) in diatomics and then polyatomic bonding and structure (pp. 663-676 & 688-692; lectures 17-18)

Supplemental video: MIT opencourse on diatomic molecules molecular orbital theory: http://videolectures.net/mit5111f05_ceyer_lec14/

Now that we understand, from a Lewis structure perspective, how molecules may be formed from atoms that are covalently bonded by electron pairs, we are ready to return to quantum mechanics to ask "what are the wavefunctions that describe the electrons in an electron-pair bond?" Again, exact numerical solutions of the Schrödinger equation give molecular properties that exactly match experimental values; and again, as in many-electron atoms, an 'orbital approximation' will provide an excellent picture of the quantum mechanics of covalent bond formation. To describe the electronic structure of molecules we will place electrons in "molecular orbitals" in a way similar to the Aufbau Principle for placing electrons in "atomic orbitals".

I. Introduction to the quantum mechanics of the covalent bond

1.	What are two properties of the hydrogen molecule, H ₂ , that correspond to the concept that
	in H_2 an electron pair bond occurs between the two H atoms ?
Г	

2.	In forming a molecular orbital, two atomic orbitals (i.e. the waves describing the orbitals)
	can interact in what two ways:
	i. ii.
3.	Constructive interference of two atomic orbitals (a.o.'s) leads to a
	molecular orbital that has a energy that the constituent a.o.'s and a
	greater electron density than the sum of the a.o. electron
	densities.

	Destructive interference of two atomic orbitals (a.o.'s) leads to an			
	molecular orbital that has a energy that the const	ituent a.o.'s and a		
	lower electron density than the sum of the	e a.o. electron		
	densities.			
	Molecular orbitals for first and second row homonuclear diatomics			
1.				
	b.o.= ½ [no. of no. of			
	giving a bond order of for the 'single' electron-pair bond in the	e molecule H ₂ .		
2.	2. Understand orbital energy diagram for m.o.'s constructed from two 1s	a.o.'s. What would		
	be the electronic configuration for the ground state of H_2^- ?			
	What is the bond order of H_2^- ?			
3.	3. What two factors that dictate whether two atomic orbitals will interact	to for molecular		
	orbitals?			
	i.			
	ii.			
	ii.			
	ii.			
4.				
4.				
4.	I. If two atomic orbitals have a very small spatial overlap, there will be a			
4.	I. If two atomic orbitals have a very small spatial overlap, there will be a energy difference between the bonding and antibonding molecular orb			
4.	I. If two atomic orbitals have a very small spatial overlap, there will be a energy difference between the bonding and antibonding molecular orb combinations of these a.o.'s.	oitals formed from		
	I. If two atomic orbitals have a very small spatial overlap, there will be a energy difference between the bonding and antibonding molecular orbit combinations of these a.o.'s.	oitals formed from		
	 If two atomic orbitals have a very small spatial overlap, there will be a energy difference between the bonding and antibonding molecular orbitalisms of these a.o.'s. Understand the orbital energy level diagrams for m.o.'s constructed from the contract of the constructed from the contract of the con	oitals formed from		

6.	Understand the orbitals resulting from interactions among the 2p a.o.'s on the two atoms in					
	a diato	mic molecule. Assume (as does the text) that the intermolecular axis is in the				
	x-direc	tion. In a homonuclear diatomic (A^{-x} - A') which are true and which are false (circle				
	correct	choice):				
	i.	The six 2p a.o.'s (3 on A, 3 on A') interact to form six m.o.'s T F				
	ii.	Among the six 2p a.o.'s, the $2p_x$ on A will only interact with the $2p_x$ on A' to form				
		σ_{2px} and σ^*_{2px} m.o.'s. ${f T}$ ${f F}$				
	iii.	The 2p _y a.o. on A and the 2p _x a.o. on A' will not interact to form m.o.'s since these				
	atomic orbitals have very different energies. T F					
	iv. In the 'simple' picture (little 2s-2p mixing as in O_2 and F_2), the π_{2py} m.o. will h					
	lower energy than the σ_{2px} m.o. , since the side-on interaction of $2p_y \leftrightarrow 2$					
		is greater than the end-on interaction of $2p_x \leftrightarrow 2p_x$ a.o.'s on A and A'. ${f T}$				
	V.	Of the six m.o.'s formed by the 2p a.o.'s, the σ^*_{2px} will, in general, have the highest				
	energy due to the greatest destructive interference between $2p_x \leftrightarrow 2p_x$ a.o.'s on A					
		and A'. TF				
	vi. In homonuclear diatomics a 2s a.o. on A and a 2px a.o. on A' will never interact					
	forming m.o.'s since there is no possibility of net constructive or destructive					
		interference between these a.o.'s. T F				
	vii. In homonuclear diatomics a 2s a.o. on A and a 2py a.o. on A' will never in					
		forming m.o.'s since there is no possibility of net constructive or destructive				
		interference between these a.o.'s. T F				
7.	Unders	tand basis of orbital designations:				
	i. A π_{2py} m.o. has the π designation because the orbital changes					
	for equivalent positions on one side of the molecule and the other relative to					
		plane that includes the internuclear axis.				
	ii.	The σ^*_{2s} m.o. has the sign for all points on a circle that is centered				
		on the internuclear axis and is contained in a plane perpendicular to this axis.				
	iii.	The σ^*_{2s} m.o. has a plane halfway between the two atoms of				
		a homonuclear diatomic molecule since it is an orbital.				

III. Electronic Configurations and molecular properties of homonuclear diatomic molecules

- 1. Understand the molecular orbital energy diagrams in the two instances
 - i. simple (applies to O_2 and F_2)
 - ii. modified (by significant 2s-2p mixing; applies to B₂,C₂,N₂)
- 2. Be able to write electronic configurations for these molecules and identify ground, excited, and not allowed ('impossible') electronic states.
- 3. Be able to evaluate number of unpaired electrons and bond order from electronic configuration.
- 4. Be able to relate configurations to molecular properties

I COMMAND MY HOMEHORK TO DO ITSELLE! HOMEHORK, BE DONE!

study via many HW #6 problems

> HW#6: 46, 47, 48, S13

ح.٤	۶٠ - ا	
i.	A molecule with no unpaired electrons will be	·
ii.	The higher the bond order, the	the bond energy and the
	the bond length.	
iii.	The excited state of O ₂ ($\sigma^2_{1s}\sigma^{*2}_{1s}\sigma^2_{2s}\sigma^{*2}_{2s}\sigma^2_{2p}\pi^3_{2p}\pi^{3*}_{2p}$) will have a
	bond length than the ground state	e of O ₂ .

IV. Third row homonuclear molecules

- 1. Inner shell m.o.'s from 1s, 2s, 2p orbitals are tightly bound 'atomic-like' inner shells
- 2. Valence orbital m.o.'s composed of 3s and 3p a.o.'s similar to those from 2s and 2p in diatomics from second row and their relative energies follow the same considerations.
- 3. For third row diatomics you would be instructed, if needed, whether the simple or s-p mixing energy ordering is applicable to a specific example.

V. Heteronuclear diatomic molecules

- 1. The same rules for forming m.o.'s from a.o.'s on different atoms still hold (similar energy and net interference) but:
 - i. pairs of a.o.'s on different atoms no longer have the same energies, e.g.
 in B-F, the 2p on F will have a ______ energy than the 2p on B
 in H-F, the 1s on H has an energy similar to the _____ atomic orbital on F
 in N-O, the 2p on N will have a _____ energy than the 2p on O

HW#6: 49

ii.	a.o.s no	longer make ed	ual contributi	ons to the m.o.'s

a.	a. when a.o.'s of unequal energy interact to form bonding and antibonding		
	m.o.'s, the higher energy a.o. makes a greater contribution to the		
	m.o. and the lower energy a.o. makes a greater		
	contribution to the m.o.		
b.	in a heteronuclear bond the unequal contributions from the a.o.'s on the two		
	atoms and the resulting uneven distribution of electrons leads to a		
	bond		