Learning Objectives and Worksheet IX

Chemistry 1B-AL Fall 2016

Sessions Lectures (15-16) Bonding in Polyatomic Molecules:

RETURNING TO THE FIRST PART OF CHAPTER 14 (pp. 633-676), to cover covalent bonding in polyatomic molecules, and then onto molecular dipoles (pp 688-692).

In the previous class sessions we have investigated how covalent bonds are formed by the constructive interference of atomic orbitals on two atoms in a diatomic molecule. Now we are prepared to extend these concepts to polyatomic molecules.

I. Ground state atomic configurations do not predict molecular structures

1. In the H_{2} molecule we saw how atomic orbitals containing an unpaired electron on each H atom interact to form a bonding molecular orbital that accommodated the electron-pair. For the atoms below, indicate the formulas of the hydrides that would be formed by an H . atom combining with unpaired electrons in the atom's ground state to form XDH bonds.
i. Li
ii. Be
iii. B
iv. C
v. N

2. In the ground state of atomic nitrogen, $1 s^{2} 2 s^{2} 2 p_{x} 2 p_{y} 2 p_{z}$ प with the unpaired electrons in the $2 p$ orbitals to form the stable octet structure NH_{3}. From your knowledge of the geometry of the $2 p_{x}, 2 p_{y}$, and $2 p_{z}$ atomic orbitals the predicted $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle would be \qquad ${ }^{\circ}$.
II. General principles of hybridization
3. In forming covalent bonds in polyatomic molecules hybrid orbitals may be utilized. A hybrid orbital consists of \qquad that may include both occupied and unoccupied in the atom's ground state configuration.
4. In forming hybrids what are the "costs" in terms of energetics (i.e. higher energy relative to atom): \qquad would be a cost of forming hybrids. This is why isolated atoms do not "naturally" go to a hybridized state.

5. There are several energetic advantages accrued (lowering of energy) when an atom utilizes hybrids to form covalent bonds in a polyatomic molecule. These include:
i.
ii. \qquad
iii.
6. We will see that whether a molecular structure involves primarily atomic or hybrid orbitals depends on the "winner" of the energy costs vs energy gains. In describing the m.o. of diatomic molecules we focused on combinations of unhybridized atomic orbitals. However s-p mixing or sp hybridization was invoked for the energy ordering for $\mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}$ but not O_{2} or F_{2}. In terms of energy costs vs gains, why would s-p mixing occur for the lower atomic number $2^{\text {nd }}$ row atoms but not for $\mathrm{Z}=8$ or 9 ?
\square
7. A bonding orbital between a hybrid orbital on boron atom and a $\mathrm{H} \cdot$ atom is formed by
\qquad between the hybrid orbital and a 1 s a.o. on the H . atom.
III. $s p$ hybridization
8. In $s p$ hybridization the $2 s, 2 p_{x}, 2 p_{y}$, and $2 p_{z}$ a.o. form \qquad sp hybrids leaving \qquad unhybridized $2 p$ orbitals.
9. The $s p$ hybrids are directed \qquad ${ }^{\circ}$ apart and the unhybridized $2 p$ a.o.'s are
\qquad to the direction of the $s p$ hybrids.
10. If $\mathrm{H} \cdot$ atoms bond with unpaired electrons in the $\mathbf{s p}$ hybrids the resulting molecular geometry is \qquad _.

Bonding in acetylene $\mathrm{C}_{2} \mathrm{H}_{2}$ applet (helps with HW\#7, 51):
http://switkes.chemistry.ucsc.edu/teaching/Jmol/AcetyleneBonding/AcetyleneBonding.html
IV. sp^{2} hybridization

1. In $s p^{2}$ hybridization the $2 s, 2 p_{x}, 2 p_{y}$, and $2 p_{z}$ a.o. form \qquad $s p^{2}$ hybrids leaving \qquad unhybridized $2 p$ orbital.
2. The $s p^{2}$ hybrids are directed \qquad ${ }^{\circ}$ apart and the unhybridized $2 p$ a.o. is
\qquad to the plane of the sp^{2} hybrids.
3. If $\mathrm{H} \cdot$ atoms bond with unpaired electrons in the $\mathbf{s p}^{\mathbf{2}}$ hybrids the resulting molecular geometry is \qquad -.
V. sp^{3} hybridization
4. In $s p^{3}$ hybridization the $2 s, 2 p_{x}, 2 p_{y}$, and $2 p_{z}$ a.o. form \qquad $s p^{3}$ hybrids leaving \qquad unhybridized $2 p$ orbitals.
5. The sp^{3} hybrids are directed \qquad ${ }^{\circ}$ apart.
6. If $\mathrm{H} \cdot$ atoms bond with unpaired electrons in the $\mathbf{s p}^{\mathbf{3}}$ hybrids the resulting molecular geometry is \qquad .

Excellent website to visualize sp3 hybrids:
http://www.uwosh.edu/faculty staff/gutow/Orbitals/N/sp3\%20hybrid.shtml
VI. Bonding in molecules with more than one $2^{\text {nd }}$ row atom

1. In the molecule n-propane $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
i. the geometry around the central carbon would be \qquad .
ii. the $\mathrm{C}-\mathrm{C}$ bonds would be the result of constructive interference between
\qquad .
iii. the $\mathrm{C}-\mathrm{H}$ bonds would be the result of constructive interference between
2. In the molecule propene $\mathrm{CH}_{2} \mathrm{CHCH}_{3}$
i. the geometry around the central carbon would be \qquad .
ii. the $\mathrm{C}=\mathrm{C}$ bond[s] would be the result of constructive interference between
a. \qquad and \qquad (for one component of double bond)
b. \qquad and \qquad (for the second component).
iii. the $\mathrm{C}-\mathrm{C}$ single bond would be the result of constructive interference between
\qquad .
VII. When might an atomic bond with unhybridized a.o.'s?
3. The geometry of some molecules with third row central-atoms indicates that the atom is forming bonds with predominantly unhybridized a.o.'s. Why might this be so in terms of the costs and advantages of hybridization?
4. For 'terminal' atoms, that bond to only one additional atom, one cannot use molecular geometry to ascertain the hybridization around the atom. As discussed in class differing textbooks make differing assumptions and the actual results, from quantum mechanical calculations, are often somewhere in between, i.e. partially hybridized. From the class presentation, you should retain our 'agreements' on ambiguous cases:
i. O in $---X=O$
ii.

N in ---X-C $\equiv \mathrm{N}$ \qquad
iii. ---F,--- Cl,-- O^{-} \qquad
iv. diatomics

Hybrid vs. no hybrid bonding in molecules visualization applet:
http://switkes.chemistry.ucsc.edu/teaching/CHEM1B/WWW other links/HybridvsNoHybrid.html
VIII. Dipole moments in polyatomic molecules and delocalized bonding

1. What are two requirements for a polyatomic molecule to have a non-zero dipole moment

HW\#7: 52
\square
2. Delocalized bonding most often occurs when $p-\pi$ a.o.'s interact to form m.o.'s that extend over several atoms in a molecule. These delocalized m.o.'s are often the description of the actual molecule that has several Lewis \qquad .

