Learning Objectives and Worksheet X

Chemistry 1B-AL Fall 2016

Lectures (17-18) Coordination Chemistry

WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19. (940-944; 952-954; 963-970).

Supplementary video: Introduction to Ligands and Complexes: <u>http://youtu.be/EufPZFAwWco</u>

Great introduction to coordination complex chemistry: http://www.chem.purdue.edu/gchelp/cchem/whatis2.html

The next two class sessions will be devoted to an introduction to a fourth type of bonding, the coordinate covalent bond. Transition metal coordination complexes are an important class of molecules that exhibit this type of bonding and are important in a number of areas including material science and biology. In addition we will study "crystal field theory" that describes the electron configuration of d-electrons in transition metal complexes and, in making predictions about the chromatic and magnetic properties of transition metal complexes, will provide for us experimental correlation of the 'reality' of d-orbital shapes which we discussed in chapter 12.

I. Introduction

	1.	A coordination complex is composed of a central atom or ion (often a transition metal) and			
		molecules (or ions) called	that are bound	to the central atom by	
			_ bonds where both	_ are contributed by	
		the			
	2.	In the coordination complex $[Cu(CN)_4]^{3-}$ the central atom/ion is, the			
516		ligands are	, and the coordination number is		
	•				

II. Common Ligands

HW#8:

1. In order to form a coordinate covalent bond the ligand must generally have one or more

^{2.} Why is ethylene diamine H₂NCH₂CH₂NH₂ with two pairxs of non-bonding electrons a bidentate ligand while cyanide (CN)⁻ with two pairs of non-bonding electrons can only form one coordinate covalent bond?

III. Formulas, oxidation states, d-electrons in coordination compounds

- 1. To calculate the number of ligands in a coordination complex you must
 - i. know the coordination number of the complex from the ______

of the complex ion, (or perhaps vice versa)

- ii. and the ______ of each ligand.
- 2. To calculate the total charge on the complex ion you must know the total charges of the forming the neutral ionic 'salt' along with the complex ion.
- 3. To calculate the oxidation state of the metal ion you must
 - i. know the ______ of the complex ion
 - ii. and the _____ (multiplied by the number of ligands)
- 4. To calculate the number of d-electrons on the metal ions one applies the oxidation state of the metal and the Aufbau principle for positive ions.
- 5. A tetrahedral complex of $[CuCl_x]^{2-}$ has a total charge of 2–
 - i. The number of chloride ligands, x, is ______.
 - ii. The oxidation state of the Cu[?] ion is ______.
 - iii. The number of d-electrons on the Cu[?] ion is ______.

Further links to the orientation of d-orbitals relative to coordination sites:

Octahedral:

http://switkes.chemistry.ucsc.edu/teaching/CHEM1B/Jmol/CrystalField/CFT_OrbsOctahedral

Several geometries: http://www.chem.uwimona.edu.jm:1104/courses/CFT_Orbs.html

Hemoglobin:

http://switkes.chemistry.ucsc.edu/teaching/CHEM1B/WWW_other_links/ox_deox_hemo.htm

IV. Magnetic and chromatic properties of transition metal complexes

see: https://www.youtube.com/watch?v=xNXRSE7pxXM

- Although in the free atom or ion all five components the d-orbital have equal energies the presence of ligands may cause some components to be more or less stable than others. The pattern of the splitting of d-orbital energies depends on the ______ of the coordination complex. The magnitude of the splitting may depend on both the nature of the ______ and that of the ______.
- In regular octahedral complexes the d-orbital energies are split into ______ levels with the ______ d-orbital components having the lower energy and the ______ d-orbital components having the higher energy.
- 3. In octahedral complexes, why are electrons in orbitals in the e_g group of higher energy than those in the t_{2g} group ?

- 4. Strong (high field, low-spin) ligands yield ______ energy splittings while weak (low field, high-spin) ligands result in ______ energy splittings.
- In octahedral complexes with d¹, d², or d³ electron configuration, the lowest energy configuration will place all electrons in a ______ orbital with spins _____
- 6. For a d⁴ configuration of an octahedral complex, what determines whether the

t_{2g}^4 $\land \downarrow \land \downarrow$ $\land \uparrow$	or $t_{2g}^3 \land $	$_\uparrow$ $e_g^1_\uparrow$	will be the ground state ?
---	----------------------	--------------------------------	----------------------------

HW#6: 56, 57, 58, 59, \$17, \$18

- 7. For a metal ion like Co³⁺ with six 3d electrons (3d⁶), a weak field ligand would give an octahedral coordination complex with ______ unpaired electrons while a strong field ligand would give a complex with ______ unpaired electrons. The magnetic properties of the weak field complex would be ______ and the magnetics properties of the strong field complex would be ______.
- In octahedral complexes, a transition between what two types of electronic energy levels allows the complex to absorb visible light ______?
- A metal ion M⁺ⁿ can form bot the complexes [M(CN)₆]ⁿ⁻⁶ and [MF₆]ⁿ⁻⁶ that both absorb visible light. Which complex is more likely to appear red ? _____