Learning Objectives and Worksheet XII Chemistry 1B-AL Fall 2016

Sessions Lectures (21-23) Chemical Kinetics

To date CHEM1B-AL has focused on the structure and chemical properties of atoms and molecules. Chemical kinetics, the final topic of the course, shifts attention to chemical reactions. In particular we will study how measuring the factors affecting the rate of a chemical reaction gives clues to the series of individual steps, i.e. the mechanism, by which the reaction proceeds.

1	Rasic	Concents	and	Definitions
1.	Dasic	concepts	anu	Deliminons

1.	For a chemical reaction, what are the differences between the information that is provided by thermodynamics [equilibrium] (CHEM-1A, CHEM-1C) and kinetics ?
HAT HOMEWORK!?	
/#10: 64, \$20 elated videos: 2. e://youtu.be/wy	
QEPWTGHao	
II.	Differential rate laws
1.	The rate at which a reaction occurs is written in terms of the of the
	reactants (raised to powers) since for higher
	there are a greater number of molecular
	allowing the possibility that the reaction will proceed more
	rapidly.
2.	In the differential rate expression:

$$-\frac{d[X]}{dt} = +n\frac{d[Y]}{dt} = k_f [A]^m [B]^n - k_r [C]^k [D]^l$$
i.
$$-\frac{d[X]}{dt} \text{ represents the } \underline{\hspace{1cm}} \text{ of a } \underline{\hspace{1cm}} \text{ X}.$$

		ii.	$\frac{d[Y]}{dt}$ represents	the	of a	Y.
		iii.	$oldsymbol{k}_{f}$ and $oldsymbol{k}_{r}$ are the		and	
			·	respect		
	ı	iv.			reactant A is	
WHAT HOMEWORK!?	3.	The exp	pression			
HW#10: 65, 67		$-\frac{d[A]_0}{dt}$	$\frac{1}{2} = k_f [A]_0^m [B]_0^n$			
		describ	es the rate of reaction	on when		and thus is called the
				rate law. H	ere the total rate or	der is
	4.	If $-\frac{d[A]}{dt}$	$\frac{A]}{a} = k_f [A]^m$, the inst	tantaneous rat	e of reaction is giver	by the
		of a plo	t of [A] vs t.			
	III.	Determi	ning order of a reac	tion		
		i.	If The initial rate inc	creases 9-fold	when $[A]_0$ is tripled (i	i.e. $[A]_0$ increased 3-fold), the
			order of the reactio	n in [A] is	·	
		ii.	If the reaction was t	third-order in [[A] and the concentr	ation of $[A]_0$ is doubled, the
			initial rate of reaction	on increases by	y a factor of	·
		iii.	If the rate of reaction	on doesn't cha	nge when [A] ₀ is dou	bled, the order of the reaction
			in reactant A is	·		
	2.	A react	ion has an initial read	ction rate (loss	of [A]) that is first-o	rder in [A] ₀ and second-order
		in [B] ₀ .	For the initial concer	ntrations of [A]] ₀ =1 M and [B] ₀ =2 M	the initial rate is $-\frac{20 mol}{Lsec}$.
		The rat	e constant for the re	action is		
	IV.	Integrat	ed rate expressions			
	1.	While t	he differential rate e	expression give	es the	of the concentration
		of a rea	ctant or product wit	h	, the integrate	d rate expression gives the
		total			of the reactant or	product as a function of

i. Since integral calculus is not a prerequisite for CHEM1B (however you better take

this important class!!), you will be given the formulas for the integrated rate

HW#10: 66 Related videos: https://youtu.be/wY qQCojggyM

expressions will be supplied on your exams. However you should recognize:

For the reaction where effectively only reactant [A] varies:

for $ln[A] = -kt + ln[A]_0$ the order x=

ii. for
$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$
 the order x=

iii. for $[A] = -kt + [A]_0$ the order x=_____

2.	For the	integrated	rate	expression:
۷.	i oi tiic	micgiatea	Tute	CAPI COSIOII.

- i. for $ln[A] = -kt + ln[A]_0$ a plot of ______ vs ____ would be a straight line with slope ______.
- ii. for $\frac{1}{A} = kt + \frac{1}{A}$ a plot of ______ vs ____ would be a

straight line with slope .

iii. for $[A] = -kt + [A]_0$ a plot of ______ vs ____ would be a straight line with slope

V. Kinetics and the mechanism of a chemical reaction

In O-Chem and beyond you will be studying how different kinetic analyses are used to determine a variety of reaction mechanisms. In CHEM1B we will get a 'taste' of the process of kinetics → mechanism for a multi-step reaction but limit the playing field to one type of process- a slow initial step followed by a fast reaction.

VI. Elementary reactions

- 1. An elementary reaction is one that corresponds to
- 2. When the measured rate law for a chemical reaction does not correspond to the reaction stoichiometry the reaction is ______ an elementary reaction. When the measured rate law for a chemical reaction corresponds to the reaction stoichiometry the reaction an elementary reaction.

HW#10: 67, 68

an elementary reaction involving onl	ly the interaction (collision) betw	veen two reactants is		
and has a	orde	r overall rate.		
n elementary reaction involving only decomposition of a single reactant				
and has a	ondo	r averall rate		

	5.	An elementary reaction that requires the improbable collision of three	molecular species is a				
		and is a nentary	reaction.				
	VII.	Temperature dependence of the rate constant					
WHAT HOMEWORKE?	1.	The Arrhenius equation is $oldsymbol{k}=zpe^{-rac{E_a}{RT}}$					
O. O.	2.	The factor z is related to the of the n	nolecules				
HW#10: 60, 70,		participating in the reaction.					
71, S20	3.	The magnitude of factor p depends on how the reaction depends on the					
Related videos: https://youtu.be/S as6DRxKM	<u>Sel</u>	The term $e^{-E_a/RT}$ enters into the rate giving the relative					
	4.	At a given temperature a larger activation energy E_a will result in					
	5	For a given activation energy E _a a higher temperature T will result in					
	٥.	collisions having					
	6.	A maxima in the reaction profile (energy vs extent of reaction, reactants \rightarrow products),					
		corresponds to the for the reaction.					
	7.	The energy difference between the reactants and the maximum is the _					
	8.	The energy difference between the products and the maximum is the _					
		·					
	9.	A relative minimum in the reaction profile is a	·				
	VIII.	Catalysis					
	1.	In general, a catalyst increases the rate of reaction by allowing a reaction.	n pathway that				
	2.	What are three types of catalysis					
		i.					
		ii.					
		iii.					