Learning Objectives and Worksheet XII

Chemistry 1B-AL Fall 2016

Sessions tectures (21-23) Chemical Kinetics

To date CHEM1B-AL has focused on the structure and chemical properties of atoms and molecules. Chemical kinetics, the final topic of the course, shifts attention to chemical reactions. In particular we will study how measuring the factors affecting the rate of a chemical reaction gives clues to the series of individual steps, i.e. the mechanism, by which the reaction proceeds.

I. Basic Concepts and Definitions

1. For a chemical reaction, what are the differences between the information that is provided by thermodynamics [equilibrium] (CHEM-1A, CHEM-1C) and kinetics ?

HW\#10: 64, S20 Related videos: ttps://youtu.be/wy QEPWTGHao
2. In a kinetics experiment one measures decreases in \qquad or increases in _or .

II. Differential rate laws

1. The rate at which a reaction occurs is written in terms of the \qquad of the
\qquad reactants (raised to powers) since for higher
\qquad there are a greater number of molecular
\qquad allowing the possibility that the reaction will proceed more rapidly.
2. In the differential rate expression:
$-\frac{d[X]}{d t}=+n \frac{d[Y]}{d t}=k_{f}[A]^{m}[B]^{n}-k_{r}[C]^{k}[D]^{l}$
i. $-\frac{d[X]}{d t}$ represents the \qquad of a \qquad X.
ii. $\frac{d[Y]}{d t}$ represents the \qquad of a \qquad Y.
iii. $\quad \boldsymbol{k}_{f}$ and \boldsymbol{k}_{r} are the \qquad and \qquad
\qquad respectively.
iv. the order of the above reaction in reactant A is \qquad .
3. The expression
$-\frac{d[A]_{0}}{d t}=k_{f}[A]_{0}^{m}[B]_{0}^{n}$
describes the rate of reaction when \qquad and thus is called the
\qquad rate law. Here the total rate order is \qquad .
4. If $-\frac{d[A]}{d t}=k_{f}[A]^{m}$, the instantaneous rate of reaction is given by the \qquad of a plot of [A] vs t.

III. Determining order of a reaction

i. If The initial rate increases 9 -fold when $[A]_{0}$ is tripled (i.e. $[A]_{0}$ increased 3 -fold), the order of the reaction in $[\mathrm{A}]$ is \qquad _.
ii. If the reaction was third-order in [A] and the concentration of [A] ${ }_{0}$ is doubled, the initial rate of reaction increases by a factor of \qquad .
iii. If the rate of reaction doesn't change when $[\mathrm{A}]_{0}$ is doubled, the order of the reaction in reactant A is \qquad .
2. A reaction has an initial reaction rate (loss of $[A]$) that is first-order in $[A]_{0}$ and second-order in $[B]_{0}$. For the initial concentrations of $[A]_{0}=1 \mathrm{M}$ and $[B]_{0}=2 \mathrm{M}$ the initial rate is $-\frac{20 \mathrm{~mol}}{L s e c}$. The rate constant for the reaction is \qquad .

IV. Integrated rate expressions

1. While the differential rate expression gives the \qquad of the concentration of a reactant or product with \qquad , the integrated rate expression gives the total \qquad of the reactant or product as a function of
\qquad _.
i. Since integral calculus is not a prerequisite for CHEM1B (however you better take this important class!!), you will be given the formulas for the integrated rate

HW\#10: 66
Related videos:
https://youtu.be/wY qQCojggyM
expressions will be supplied on your exams. However you should recognize:
For the reaction where effectively only reactant [A] varies:
for $\boldsymbol{\operatorname { l n }}[A]=-\boldsymbol{k} \boldsymbol{t}+\boldsymbol{\operatorname { l n }}[A]_{0}$ the order $\mathrm{x}=$ \qquad
ii. for $\frac{1}{[A]}=k t+\frac{1}{[A]_{0}} \quad$ the order $\mathrm{x}=$ \qquad
iii. for $[A]=-\boldsymbol{k t}+[A]_{0} \quad$ the order $\mathrm{x}=$ \qquad
2. For the integrated rate expression:
i. for $\ln [A]=-k t+\ln [A]_{0}$ a plot of \qquad vs \qquad would be a straight line with slope \qquad .
ii. for $\frac{1}{[A]}=k t+\frac{1}{[A]_{0}}$ a plot of \qquad vs \qquad would be a straight line with slope \qquad .
iii. for $[A]=-\boldsymbol{k} t+[A]_{0}$ a plot of \qquad vs \qquad would be a straight line with slope \qquad -
V. Kinetics and the mechanism of a chemical reaction

In O-Chem and beyond you will be studying how different kinetic analyses are used to determine a variety of reaction mechanisms. In CHEM1B we will get a 'taste' of the process of kinetics \rightarrow mechanism for a multi-step reaction but limit the playing field to one type of process- a slow initial step followed by a fast reaction.

VI. Elementary reactions

1. An elementary reaction is one that corresponds to \qquad
\qquad .
2. When the measured rate law for a chemical reaction does not correspond to the reaction stoichiometry the reaction is \qquad an elementary reaction. When the measured rate law for a chemical reaction corresponds to the reaction stoichiometry the reaction
\qquad an elementary reaction.

An elementary reaction involving only the interaction (collision) between two reactants is
\qquad and has a \qquad order overall rate.

An elementary reaction involving only decomposition of a single reactant
HW\#10: 67, 68 \qquad and has a \qquad order overall rate.
5. An elementary reaction that requires the improbable collision of three molecular species is a _._ and is a __ entary reaction.

VII. Temperature dependence of the rate constant

HW\#10: 60, 70, 71, S20

Related videos: https://youtu.be/Sel as6DRxKM

1. The Arrhenius equation is $k=z p e^{-E_{a} / R T}$
2. The factor z is related to the \qquad of the molecules participating in the reaction.
3. The magnitude of factor p depends on how the reaction depends on the \qquad
The term $e^{-E_{a} / R T}$ enters into the rate giving the relative \qquad
\qquad .
4. At a given temperature a larger activation energy E_{a} will result in \qquad collisions having \qquad .
5. For a given activation energy E_{a} a higher temperature T will result in \qquad collisions having \qquad .
6. A maxima in the reaction profile (energy vs extent of reaction, reactants \rightarrow products), corresponds to the \qquad for the reaction.
7. The energy difference between the reactants and the maximum is the \qquad
\qquad .
8. The energy difference between the products and the maximum is the \qquad
\qquad .
9. A relative minimum in the reaction profile is a \qquad .

VIII. Catalysis

1. In general, a catalyst increases the rate of reaction by allowing a reaction pathway that
2. What are three types of catalysis

