CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

lecture 8 outline

What's wrong here ??????

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

```
spectrum of visible light
```


$\begin{array}{lllllll}\Lambda & \text { I } & \text { g } & \boldsymbol{y} & \boldsymbol{\Lambda} & \mathbf{O} & \text { у }\end{array}$

white: the presence of all wavelengths
black: the absence of all wavelengths

```
color getting to your eye:
```


what wavelengths are contained in the light (illumination)? what wavelengths are reflected (reflectance) ?

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Hue
Hue(color) is determined by the dominant wavelensth (the wavelensth within the visible-lisht spectrum at which the energy output from a source is greatest)

What color does this spectral curve look like?
Answer: White

Value - "Brightness" of a color

The brightness of light is related to intensity or the amount of light an object emits or reflects. Brightness depends on light
wave amplitude, the height of light waves. Brightness is also somewhat influenced by wavelength. Yellow light tends to look brighter than reds or blues. Change in value can be achieved with the addition of blacks or greys.

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

2. Know the following terms related to the color of objects
\checkmark b. brightness
\checkmark c. saturation
\checkmark d. value
\checkmark e. trichomacy

from outline

3. Describe the differences between additive and subtractive color mixing. Which types of color mixing applies to (1) paint pigments, (2) stage lighting (multi spotlight), and (3) Pointillist art?

Additive Colors Intro

- Colored lights are mixed using additive color properties
- With additive colors, combining two or more colors together creates a color that is closer to
white (a 'lighter' color)
- Examples of additive color sources include TVs and computer screens

Additive Color Mixing

- The additive primary colors are red, green, and blue
- Combining one of these additive primary colors w/equal amounts of another one results in the additive secondary colors of cyan, magenta, and yellow
- Combining all three primary colors (in equal parts) will result in in the color white
- Absence of all light= black
- Adding all colors= white

Additive Colors
Combined in Equal Parts
Blue + Green=Cyan
Red + Blue=Magenta
Green + Red=Yellow
Red + Green + Blue $=$ White

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Additive Color Mixing Contin.
Computers and Televisions

- Use additive color
- Lighted screens use a mosaic of red, green, and blue dots -glowing phosphorus
- Our eyes do not distinguish the individual dots, instead the dots stimulate the rods in our retina by adding/blending the light together to create a composite color

additive color mixing of lights
adarive color mixing of lights

http://phet.colorado.edu/sims/color-vision/color-vision en.jnlp
(3) $\quad \mathrm{m}$

additive color mixing (red, green, blue)	

Subtractive Color Intro

- Subtractive or pigment colors are used when the image is derived from reflected natural/white light, like an image from a book, photo, etc.
- This is opposed to additive color, where the image is emitted from a light source (TVs, phone screens, computers)
- Subtractive/pigment colors are seen by the reflection of light
- The colors that are not reflected are absorbed (subtracted)
- Subtractive color mixing is used in printer ink cartridges and paint, for example
- If the object is viewed in white light (as is usual) the color seen is the complement of the wavelengths absorbed

Subtractive Color Mixing			
- Pigments or dyes yield different results when combining colors than additive color - The subtractive primary colors are cyan, magenta, and yellow			
Subtractive Colors Mixing			
Combine	Absorbs	Leaves	
Cyan + Magenta	Red + Green	Blue	
Cyan + Yellow	Red + Blue	Green	
Magenta + Yellow	Green + Blue	Red	
Cyan + Magenta + Yellow	Red + Green + Blue	Black	
${ }^{35}$			

| subtractive color mixing (magenta ('red'), yellow, | | |
| :---: | :---: | :---: | :---: |
| | | |

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Examples of Additive \& Subtractive Color Mixing

Filters

- The same process of subtractive color mixing applies to mixing color filters, as various colors are absorbed into the filter
Stage Lighting
- In stage lighting, there are two ways to mix colors:
- Additive: when 2 or more differently colored lights are aimed at the same surface
- Subtractive: when a single light source shines through different colored filters, and each filter allows certain colors to pass while blocking and absorbing the other colors Pointillism
- Paints can be made to behave as additive colors
- Rather than mixing the colors, artists use individual dots of the additive primary colors
- At a distance, your eye creates the additive result

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

L-cones (long wavelength sensitive, "Red")
M -cones (middle wavelength sensitive "Green")
s -cones (short wavelength sensitive "Blue")

3 pigments: same 11-cis retinal, differing amino acids in the opsins

Figure 12. The closely related molecular structure of the cone opsins. The blue cone opsin compared with thodopsin. The blue-cone opsin comparcd with the green opsin and the minimal difference between the red-

color vision
adaptive optics and cones
5. The UC Center for Adaptive Optics (CfAO) is located on the hillside adjacent to

Natural Sciences II and Thimann Lecture Halls. What is adaptive optics, how was it used
to obtain maps of the color sensitive receptors in the 'alive' human eye? What did it reveal about the relative numerosity of $\mathrm{L}-\mathrm{M}$ - and S -cones among individuals? color? To what general regions of the color spectrum do each of them respond? What is the origin of the different spectral sensitivities of the three cone pigments?

CROWN 85: Visual Perception: A Window to Brain and Behavior Lecture 8

Adaptive Optics

By: Alexandra Caselman
Crown 85

What is Adaptive Optics?

- Refers to optical systems which adapt to compensate for optical effects introduced by the medium between the object and its image.
- Relating to Astronomy: A method of bending light to diffuse visual distractions in the atmosphere.
- The resolution of an optical system is limited by the diffraction of light waves (AKA theoretical diffraction limit)
- AO helps compensate for the imperfections. For example, the eye should theoretically be able to see p to .3 arcmin, but because of imperfections of the cornea and lens it is only able to see around 1 arcmin

I Don't Speak Science Translation Guide

- Theoretical Diffraction- theoretical maximum resolving power of the lens
- Arcmin- is a unit of angular measurement equal to $1 / 16$ of 1 degree (or $1 / 21600$ of a circle because $1 / 360$ is 1 degree of a circle)
- Photoreceptor cell- is a specialized type of neuron found in the retina. Photoreceptors convert light into signals that can stimulate biological processes. The two classic photoreceptor cells are rods and cones, each contributing information used by the visual system.

How AO Works in Telescopes

- Atmosphere causes turbulence (effect is "twinkling" of stars)
- Shoots a laser into the sky
- Reaches the edge of atmosphere and stimulates particles causing them to glow (used as a fake star)
- The glow is used as a reference to calculate the distortion
- Sent to a computer to calculate the atmospheric distortion
- The computer creates an opposite wavelength to mirror the one sent down
- Applied to a formable mirror that is transformed into the
 opposite wavelength
- Lightwave becomes evened out which creates a clear image
- https://www.youtube.com/watch?V=gDGvNyVApgg

The Three Cone Types

Human colour vision depends on three classes of receptor, the short- (S), medium- (M), and long- (L) wavelength-sensitive cones. These cone classes are interleaved in a single mosaic so that, at each point in the retina, only a single class of cone samples the retinal image.

How are the Three Cone Types Measured?

Individual cones were classified by comparing images taken when the photopigments were fully bleached with those taken when the photopigments were either dark-adapted or exposed to a light that selectively bleached one photopigment. From these images, we created absorptance images that remove static features to reveal only the distribution of the photolabile pigments that distinguish the cone classes. S= Blue M=Green L= Red

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Variation in Ratios of Cone Types

how adaptive optics creates 'perfected' image

chromatic adaptation

Look at a color that adapts ("fatigues") one set of cones (or color mechanisms-later);

After adaptation cones that are not fatigues "take over" and give complementary perception
adaptive optics and cones
\checkmark 5. The UC Center for Adaptive Optics (CfAO) is located on the hillside adjacent to
Natural Sciences II and Thimann Lecture Halls. What is adaptive optics, how was it used
to obtain maps of the color sensitive receptors in the 'alive' human eye? What did it reveal
bout the relative numerosity of L, M - and S -cones among individuals?

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

from outline

6. Know the following terms related color vision:
a. metameric match
b. simultaneous contrast

- For observers with normal color vision only three elements of information are captured from a [large] patch of light and reported to the nervous system: the activity of the L-cones, the activity of the M-cones, and the activity of the S-cones
- Two light of differing spectral composition (intensities at various wavelengths) can produce the same activity in each of the L-, M-, and S-cones and thus will appear to be the same color ! ! ! !!!!!!!!
- Two lights of differing spectral composition but which appear identical are METAMERS (a METAMERIC MATCH).

For example: an appropriately chosen mixture of red + green is a metameric match with a pure yellow

What color does this spectral curve look like?
Answer: Yellow, although there is no yellow light

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Simultaneous Contrast

Perception of a color "repelled" by surround color

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

from outline
6. Know the following terms related color vision:
\checkmark a. metameric match
\checkmark b. simultaneous contrast

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

color assimilation (perception of a color "attracted" by surround color)

from outline

6. Know the following terms related color vision:
\checkmark a. metameric match
\checkmark b. simultaneous contrast

from outline

7. What are color opponent cells?
8. How do the Young-Helmholz and Herring theories of vision differ? Are they incompatible?

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

webvision R-G opponent animation

http://webvision.med.utah.edu/movies/Midget.mov

from outline
$\checkmark 7$. What are color opponent cells?
\checkmark. How do the Young-Helmholz and Herring theories of vision differ? Are they incompatible?

from lecture outline: COLOR
9. Which of the major "parallel pathways" transmits color information?

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8
what (temporal, ventral) pathway processes color

http://www.nmr.mgh.harvard.edu/mkozhevnlab/?page id=663
from lecture outline-color Blindness - Benham's disk
10. Know the following terms related to congenital color blindness:
a. protanopia
b. deuteranopia
c. tritanopia
d. protanomaly, deuteranomaly, tritanomaly
11. How is congenital color blindness inherited? Are men or women more likely to have inherited color blindness?
12. What is a possible explanation for Benham's color wheel?

class reports: color blindness

Types of Color Blindness
Maia Baltzley

CROWN 85: Visual Perception: A Window to Brain and Behavior

 Lecture 8
Basic Types

1. Trichromancy: Regular color vision
2. Anamolous Trichromancy: Mild color blindness
a. One type of cone perceives light slightly out of alignment
b. All colors are slightly off
3. Dichromancy: Only two of three cones are working
a. One type of cone completely absent, other cone must compensate
b. Colors are greatly distorted
4. Monochromacy: Cannot see color
a. Everything is in different shades of grey
b. No working color receptors

Dichromancy

Those with a dichromatic deficiency can only mix and match colors with two primary colors instead of three

1. Protanopia: absence of long (L) wavelength photopigment (rec), which is replaced by medium wavelength (green)
2. Deuteranopia: absence of M pigment (green), replaced by L pigment (fee)
3. Tritanopia: absence of S pigment (
a. very rare
b. cannot see or yellow

Anomolous Trichromancy

Mild color blindness
Types:

1. Protanomaly: defective L pigment (red)
a. more likely to confuse red and green
2. Deuteranomaly: defective M pigment (green)
a. shift toward L pigments
b. confusion of red and green
3. Tritanomaly: defective S pigment (
a. extremely rare
b. confusion of and yellow

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

11. How is congenital color blindness inherited? Are men or women more likely to have inherited color blindness?

Color Blindness Heredity
By Winggo Tse

Parent-Child Heredity Pattern

- Red-green colorblindness is a common hereditary condition that is passed down through the 23rd chromosome, also known as the sex chromosome
- Each parent provides one of two parts of the chromosome
- The 23 rd chromosome consists of $2 x$ chromosomes if you are female or 1 x -chromosome and 1 y -chromosome if you are male

Parent-Child Heredity Pattern

- The colorblind 'gene' is only found in the x-chromosome
- Since males only have $1 x$-chromosome, inheriting just one affected colorblind x-chromosome would make the male colorblind Females have 2 x -chromosomes
- both x-chromosomes need to be affected in order for the female to be colorblind
- if only 1 x-chromosome is affected, the female is NOT colorblind but is a carrier for the colorblind gene

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Numbers of men vs. women who are colorblind

- Much higher chance of colorblindness in males because males only have 1 x-chromosome in the 23rd chromosome
- Color Vision Deficiency(CVD) affects 1 in 8 males(12%) and 1 in 200 females(0.5\%)

Blue-cone Monochromacy

- Caused by faulty genes responsible for L and M cones
- Only rods and S cones (blue) are able to function and transmit color information
- Results in Complete blindness except in situations when rods and S cones are able to function
- found ~ 1 in 100,000 men and unknown for women
- intolerance to light
- very similar to rod monochromacy

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Behavioral Aspects of Tetrachromatic Vision

- Wider spectrum of colors
- Plays a role in mate selection

Females attracted to males with brightest UV reflectance

- Foraging and tracking food
- Fruits and berries reflect UV light
- Some prey leave behind UV trails

Any questions?

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Benham's disk

12. What is a possible explanation for Benham's color wheel?

Benham's Disk

Bryant Mohan Crown 85

The Fechner Color Effect
Also called pattern-induced flicker colors (PIFCs), it is an illusion of color created with rapidly is an illusion of color created with rapidly
moving or changing black and white patterns.
Dr. Gustav Theodor Fechner discovered this effect. Benham later created a more intricate, detailed example.

What Causes the Fechner Color Effect?
Scientists still aren't 100% sure about the exact causes
Definitely has to do with differing rates of stimulation for different color specific retinal ganglion cells and lateral inhibition.

The ganglion cells translate patterns of light into patterns of nerve firing.
Lateral inhibition is when an excited neuron reduces the activity of its neighbors, causing action potentials not to spread laterally.

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Application to Benham's Disk

When the patterns move, white turning to black makes white light appear slightly blue-green, but black turning to white makes white light appear slightly red.
The different patterns make different colors appear at different times, creating different combinations of color.

from outline

13. Distinguish between bottom-up and top-down processing.
14. How are the following factors involved in various visual illusions?
a. illusions with explicitly known physiological origins
b. illusions consistent with perceptual overestimation of acute angles
c. context or association including size constancy

Visual Illusions

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

from outline

illusions consistent with overestimation of acute angles
13. Distinguish between bottom-up and top-down processing.
14. How are the following factors involved in various visual illusions?
$\checkmark \quad$ a. illusions with explicitly known physiological origins b. illusions consistent with perceptual overestimation of acute angles
c. context or association including size constancy

CROWN 85: Visual Perception:
 A Window to Brain and Behavior
 Lecture 8

Hering Illusion

http://www.michaelbach.de/ot/ang-hering/

Why does this happen?

- most modern investigators have proposed theories based on the receptive field properties of orientation-selective neurons in V1 of subhuman primates, lateral inhibitory interactions typically playing a central part in these accounts
- Blakemore and Carpenter propose that inhibitory interactions among orientationally tuned neurons that respond to bars of similar orientation would result in over estimation of acute angles
- When two spatially contiguous lines of neighboring orientations are exposed simultaneously, the activity peaks in the population of orientation detectors are shifted away from each other because of the inhibitory interactions \rightarrow the orientations of the lines comprising the angle are perceived wrongly

"physiological" explanation

Orientationally tuned neurons in V1:

- in V1 one finds neurons that respond to a bar of a specific orientation (old stuff; previous lecture)
- there are inhibitory connections among neurons with similar (nearby) preferred orientations
- bars with similar orientations form acute angles
- the inhibition among nearby orientations leads to an over estimate of an acute angle

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

subjective Contours (expectation; top-down effect)

from outline

13. Distinguish between bottom-up and top-down processing.
14. How are the following factors involved in various visual illusions?
$\checkmark \quad$ a. illusions with explicitly known physiological origins
$\checkmark \quad$ b. illusions consistent with perceptual overestimation of acute angles
c. context or association including size constancy

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Top-Down Processing

- Also known as conceptually-driven processing,
since your perceptions are influenced by
expectations, existing beliefs and cognitions.
- In some cases you are aware of these influences, but in other instances this process occurs without conscious awareness.

Description

- The Muller-Lyer and Ponzo illusions and the Ames Room demonstration are examples of 'top-down' processing where the relative size of an object is misconstrued due to its placement among distance cues.
- If objects of constant size are placed in an environment where there are strong perspective cues, these objects can appear larger at greater distances.

from outline

\checkmark 13. Distinguish between bottom-up and top-down processing.

14. How are the following factors involved in various visual illusions?
a. illusions with explicitly known physiological origins
$\checkmark \quad$ b. illusions consistent with perceptual overestimation of acute angles
$\checkmark \quad$ c. context or association including size constancy

Sensory Inputs: Binocular Rivalry

- a type of perceptual rivalry, where two different images are presented to the two eyes simultaneously but you are only conscious of one image at a time
i. Also called ambiguous or rivalrous
ii. One image is dominant, whereas the other is suppressed
iii. Dominance will shift
iv. All/part of one image appears totally suppressed
- Increasing the strength of one stimulus, by adding motion or contrast etc, will increase its dominance by decreasing the duration of its suppression

What is bistable perception?

- When an image is able to provide multiple, but stable perceptions
- Because ambiguous figures like the Necker cube and Rubin vase can be
experienced in two different ways, they are called bistable.
- When there are two or more percepts, it would be called multisable.

More top down illusions
15. Give examples of the visual system "making bets" or "filling in" and understand how these can lead to illusions.

\qquad

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

Sensory Inputs: Higher order interpretative bistability

- Bistable/multistable perception is a product of continuous interactions between 'low-level' (sensory) and 'high-level' (frontal and parietal) brain regions
- Where the visual system adds information to the one contained in retinal projections.
- In this sense, vision is interpretive, a process similar to higherorder intellectual activities, such as reasoning, in being mediated by representations and informed by implicit knowledge.

References

Philipp Sterzer, et. al, The neural bases of multistable perception,
Trends in Cognitive Science, Volume 13, Issue 7, 2009, 310-318
http://blog.pascallisch.net/wp
content/uploads/2015/02/Rubin-vase.png
http://nordhjem.net/the-where-and-the-what-of-bistable-
perception/
http://www.youramazingbrain.org/supersenses/necker.htm

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8
impossible figures
the visual system attempts to make 3-D 'sense' out of 2-D figures that may not have a consistent 3-D interpretation or may correspond to a 2-D image of a 'not-ordinary' object as viewed from a unique viewpoint.

Escher

CROWN 85: Visual Perception:
A Window to Brain and Behavior
Lecture 8

FINIS

