Chem 163A -- Fall 2002

Chemistry 163A
Quantum Mechanics and Basic Spectroscopy

Fall 2002

M-W-F
9:30 - 10:40 A.M.
Thiman 1

  • Announcements

  • Class Handouts

  • On-Line Questions and Answers

  • Course Information

  • Syllabus-WWW Links-Schedule of Exams

  • Electronic Reserves for Chemistry 163A



    Instructor: Gene Switkes
    Office: 121/104 Sinsheimer
    Phone: X 9-2000
    email gene@chemistry
    Office Hours: M   2:00-4:00
    W   11:00-11:45
    Teaching Associates: Adam Schwartzberg
    135 Thimann
    X 9-3912
    adlib@chemistry.ucsc.edu
    Office Hours: Th 2:00-3:00 PM

    Nicole Winter
    361 Thimann
    X 9-3435
    winter@chemistry.ucsc.edu
    Office Hours: F 1:00-2:00 PM
    Text: Quantum Chemistry,
    by D. A. McQuarrie
  • Discussion Sections:
    M 5:00-6:10 PM Thimann 101 (SEC 01A)
    M 6:15-7:25 PM Thimann 101(SEC 01B)
    T 2:00-3:10 PM Thimann 101(SEC 01C)
    W 8:00-9:10 AMThimann 101(SEC 01D)
    Tutorial:
    Tu 7:00-9:00 PMThimann 391
    Mathematical/
    Philosophical extras:
    W 2:00-3:10 PMThimann 391


    On reserve:

    1. Quantum Chemistry, D.A. McQuarrie, QD462.M26
    2. Physical Chemistry, a Molecular Approach, D. A. McQuarrie and J. D. Simon, QD453.2.M394
    3. Atoms and Molecules, M. Karplus, QD461.K33
    4. Quantum Chemistry, J. P. Lowe, QD462.L69 1993
    5. Physical Chemistry, P. Atkins, QD453.2, A88 1994b

    Good www sites for Introductory Quantum Chemistry:

    Lecture Topics and WWW Links

    To be covered (note exam dates!):

    1. Origins of quantum mechanics (Ch. 1)

      Why Quantum Mechanics?

      Biochemical Phenomena

      1. Observations that didn't fit classical theories
        1. Photoelectric effect (Einstein)
        2. Compton scattering (Compton)       Compton scattering Telescope    Compton Scattering Demo
        3. Davisson-Germer experiment (Davisson-Germer-Thompson)
        4. Existence of the hydrogen atom (Rutherford Model) (Rutherford)

      2. New "laws" from the quantum conspirators Wave-Particle Duality

        1. Energy of light waves "quantized" (Planck)
        2. Particles have wavelength (DeBroglie)
        3. Bohr model of the hydrogen atom (Bohr)
        4. Indeterminacy Principle (Heisenberg) (more Heisenberg)

    2. Foundations of quantum mechanics

      1. Some new mathematical vocabulary (Ch. 2):Wavefunctions and Operators

      2. Postulates of quantum mechanics (Ch. 4): The Schrödinger Equation (Schrödinger)

    3. Application of quantum mechanics to model systems and implications of the results

      Postulates of Quantum Mechanics
      Calculate Positional Probabilities for Particle in a Box [mathematica]
      The Quantum Corral

      1. Confined particles with kinetic energy (Ch. 3) 2-D Particle-in-a-box
        1. Solutions of Schrödinger equation
        2. Why only certain energies?
        3. Calculation and meaning of average or observable values

      2. Harmonic oscillator-a model for molecular vibrations (Ch. 5):
        Harmonic Oscillator
        Wavefunctions for Barrier Problems (Tunnelling) UC Irvine
        1. Setting up the Schrödinger equation and separation of CM and relative motions
        2. Methods of solution
        3. Energies and nature of the wave functions (why only certain energies?)
        4. Tunneling-a purely quantum phenomenon
        5. The harmonic oscillator and the vibration of diatomic molecules

        Midterm about here - Wednesdayy, 30th October, EVENING

      3. The rigid-rotor-a model for molecular rotation Ch. 6, pp. 203-221):
        Rigid Rotor
        1. Schrödinger equations in many dimensions.
        2. Separation of variables technique
        3. Solutions of the Q and F equations (relationships to atomic s, p, d, ...orbitals)
        4. Energy levels and rotational spectra
        5. Rotational angular momentum

    4. The hydrogen atom (Ch. 6, pp. 221-243)
      Hydrogen Atom
      Atomic Orbitals
      Visualize Hydrogenic Orbitals [mathematica]

      1. Hamiltonian and solution techniques
      2. Energies and wavelength
      3. Interpretation of the n, l, m, ms quantum numbers
      4. Shapes, "signs," and modal properties of hydrogenic orbitals

    5. Many electron atoms (Ch. 7-8):
      Multielectron Atoms

      1. Approximate methods
      2. Screening and orbital energies
      3. Spin and Pauli exclusion principle (Dirac) and (Pauli)
      4. Term Values and Russell-Saunders coupling

    6. Bonding in molecules (Ch. 9):
      Molecules

      1. Molecular orbitals and LCAO method (Mulliken)
      2. Implications of m.o.'s for H2
        1. Energy
        2. Electron density distribution
        3. The "electron pair bond"
      3. Homonuclear diatomic molecules
        1. M.O. energy ordering
        2. Prediction of molecular properties
      4. Polyatomic molecules Delocalized orbitals (Pauling)

    7. Spectroscopy
      (Survey on class handout and Ch. 10, detailed presentation in Chemistry 163C):

      Spectroscopy

      1. General principles (Herzberg)
      2. Vibrational spectroscopy
      3. Electronic spectroscopy
      4. Qualitative survey of various types of chemical and biochemical spectroscopy (e.g. NMR (Rabi) and (Bloch and Purcell) )

    Final Exam - Wednesday, 4 December, 4:00-7:00 PM